mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TO-92S

Pin Definition:

1. V_{CC} 2. GND

Pin Definition:

- V_{CC}
 Output
- . 3. GND

Description

TSH253 Hall-effect sensor is a temperature stable, stress-resistant switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress. TSH253 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

Features

- CMOS Hall IC Technology
- Solid-State Reliability much better than reed switch
- Omni polar output switches with absolute value of North or South pole from magnet
- Operation down to 1.8 V and Max at 6V.
- High Sensitivity for reed switch replacement
- ESD HBM ±4KV Min

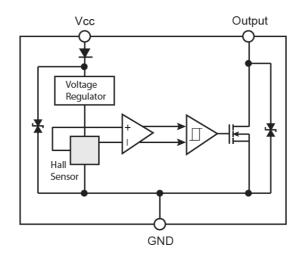
Application

- Solid state switch, Revolution counter
- Lid close sensor for power supply devices
- Magnet proximity sensor for reed switch replacement in high duty cycle applications.
- Safety Key on sporting equipment
- Speed sensor, Position Sensor, Rotation Sensor

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

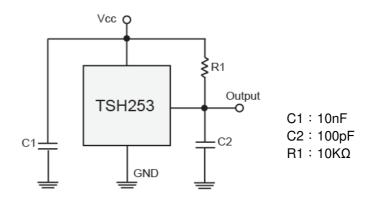
Characteristics	Limit	Value	Unit		
Supply voltage	V _{CC}	6	V		
Output Voltage	V _{OUT}	6	V		
Reverse voltage		V _{CC/OUT}	-0.3	V	
Magnetic flux density			Unlimited	Gauss	
Output current		I _{OUT}	1	mA	
Operating Temperature Range	T _{OPR}	-40 to +85	°C		
Storage temperature range	T _{STG}	-55 to +150	°C		
Maximum Junction Temp		TJ	150	°C	
Thermal Resistance - Junction to Ambient	TO-92S	0	206	°C/W	
mermai Resistance - Junction to Ambient	SOT-23	θ_{JA}	543		
Thermal Resistance - Junction to Case	TO-92S	0	148	°C/W	
	SOT-23	θ _{JC}	410	0/00	
Paakaga Power Dissingtion	TO-92S		606	mW	
Package Power Dissipation	SOT-23	P _D	230	11100	

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


Ordering Information

Part No.	Package	Packing
TSH253CT B0G	TO-92S	1Kpcs / Bulk Bag
TSH253CX RFG	SOT-23	3Kpcs / 7" Reel

Note: "G" denote for Halogen Free Product



Block Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse VDD protection is not included. For reverse voltage protection, a 100Ω resistor in series with VDD is recommended.

Typical Application Circuit

Electrical Specifications (DC Operating Parameters : T_A=+25°C,V_{CC}=5V)

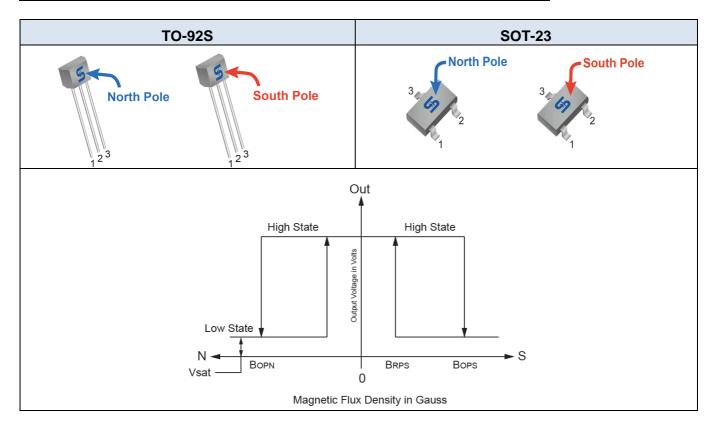
Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Operating	1.8		6	V
Supply Current	Average		2.6	6.0	mA
Output Low Voltage	I _{OUT} =0.5mA			200	mV
Output Leakage Current	I_{OFF} B <b<sub>RP, V_{OUT} = 3V</b<sub>			10	uA
Output Rise Time	$R_L=10k\Omega, C_L=20pF$			0.45	uS
Output Fall Time	$R_L=10k\Omega; C_L=20pF$			0.45	uS
Electro-Static Discharge	НВМ	4			KV

Magnetic Specifications (TSH253CT)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating	B _{OPS}	S pole to branded side, $B > B_{OP}$, Vout On		30	60	Gauss
Point	B _{OPN}	N pole to branded side, $B > B_{OP}$, Vout On	-60	-30		Gauss
Release Point	B _{RPS}	S pole to branded side, $B < B_{RP}$, Vout Off	5	25		Gauss
	B _{RPN}	N pole to branded side, $B < B_{RP}$, Vout Off		-25	-5	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		5		Gauss

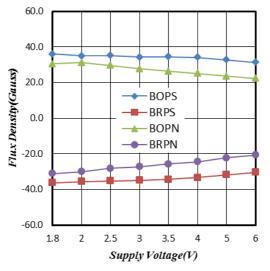
Note: 1G (Gauss) = 0.1mT (millitesta)

Magnetic Specifications (TSH253CX)


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating	B _{OPS}	N pole to branded side, $B > B_{OP}$, Vout On		30	60	Gauss
Point	B _{OPN}	S pole to branded side, $B > B_{OP}$, Vout On	-60	-30		Gauss
Release Point	B _{RPS}	N pole to branded side, $B < B_{RP}$, Vout Off	5	25		Gauss
	B _{RPN}	S pole to branded side, $B < B_{RP}$, Vout Off		-25	-5	Gauss
Hysteresis	B _{HYS}	BOPx - BRPx		5		Gauss

Note: 1G (Gauss) = 0.1mT (millitesta)

Output Behavior versus Magnetic Pole


DC Operating Parameters: $T_A = -40$ to $125^{\circ}C$, $V_{CC} = 1.8V \sim 6V$

Parameter	Test condition	OUT			
South pole	B <bop[(-60)~(-5)]< th=""><th>Low</th></bop[(-60)~(-5)]<>	Low			
Null or weak magnetic field	B=0 or B < BRP	Open(Pull-up Voltage)			
North pole	B>Bop(60~5)	Low			

Characteristic Performance

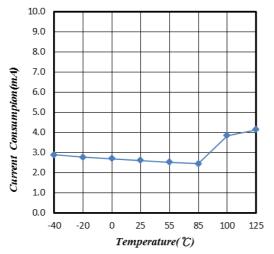


Figure 3. Supply Current vs. Temperature

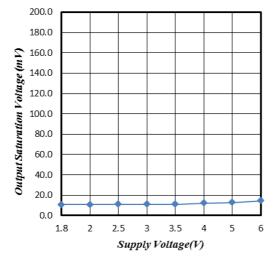


Figure 5. Output Saturation Voltage vs. Supply Voltage

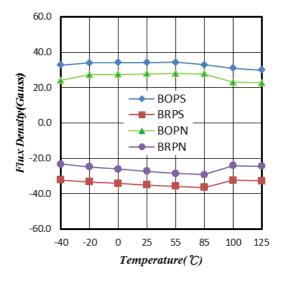


Figure 2. Temperature vs. Flux Density

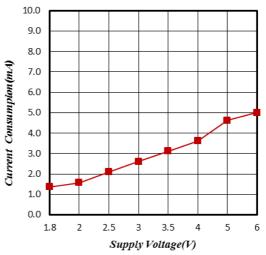


Figure 4. Supply Current vs. Supply Voltage

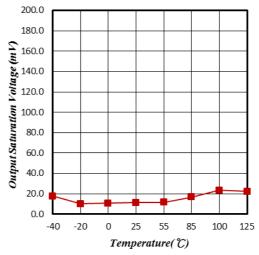


Figure 6. Output Saturation Voltage vs. Temperature

Characteristic Performance

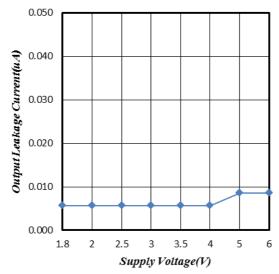


Figure 7. Output Leakage Current vs. Supply Voltage

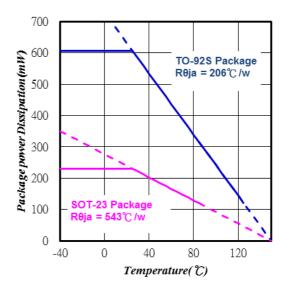
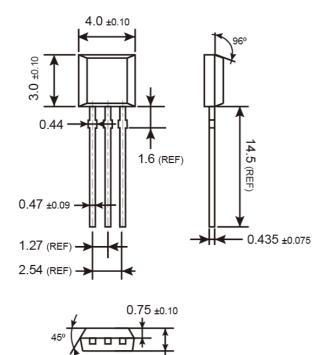
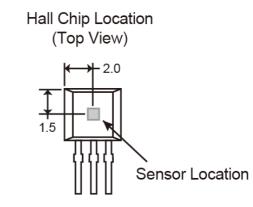
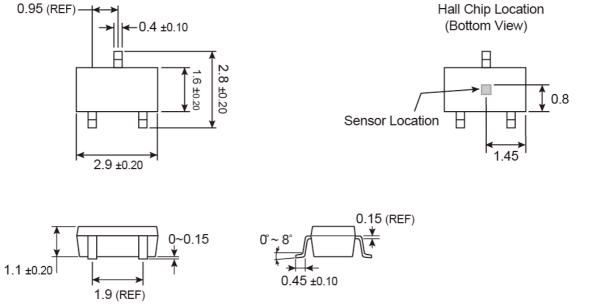




Figure 8. Power Dissipation vs. Temperature

TO-92S Mechanical Drawing

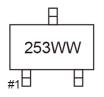
Unit: Millimeters

Marking Diagram


253 = Device Code

1.52 ±0.10

- **Y** = Year Code (3=2013, 4=2014....)
- WW = Week Code (01~52)



SOT-23 Mechanical Drawing

Unit: Millimeters

Marking Diagram

253 = Device Code

WW = Week Code Table

week	1	2	3	4	5	6	7	8	9	10	11	12	13
code	OA	OB	OC	OD	OE	OF	OG	OH	OI	OJ	OK	OL	OM
week	14	15	16	17	18	19	20	21	22	23	24	25	26
code	ON	00	OP	OQ	OR	OS	OT	OU	OV	OW	OX	OY	OZ
week	27	28	29	30	31	32	33	34	35	36	37	38	39
code	PA	PB	PC	PD	PE	PF	PG	PH	ΡI	PJ	PK	PL	PM
week	40	41	42	43	44	45	46	47	48	49	50	51	52
code	PN	PO	PP	PQ	PR	PS	PT	PU	PV	PW	PX	PY	ΡZ

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.