

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

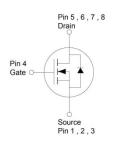
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-Channel Power MOSFET

 $30V, 66A, 6.1m\Omega$

FEATURES

- Low R_{DS(ON)} to minimize conductive loss
- · Low gate charge for fast power switching
- 100% UIS and R_q tested
- Compliant to RoHS directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- Halogen-free according to IEC 61249-2-21


KEY PERFORMANCE PARAMETERS				
PARAMETER		VALUE	UNIT	
	V_{DS}	30	V	
R _{DS(on)}	$V_{GS} = 10V$	6.1	mΩ	
(max)	$V_{GS} = 4.5V$	8.1		
	Q_g	9.6	nC	

APPLICATIONS

- DC-DC Converters
- Battery Power Management
- ORing FET/Load Switching

Note: MSL 1 (Moisture Sensitivity Level) per J-STD-020

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V_{DS}	30	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain Current (Note 1)	$T_C = 25^{\circ}C$		66	Α	
	$T_{C} = 25^{\circ}C$ $T_{A} = 25^{\circ}C$	l _D	15		
Pulsed Drain Current		I _{DM}	264	Α	
Single Pulse Avalanche Current (Note 2)		I _{AS}	20.5	Α	
Single Pulse Avalanche Energy (Note 2)		E _{AS}	63	mJ	
Total Power Dissipation	$T_C = 25^{\circ}C$	P _D	44.6	W	
	T _C = 125°C		8.9	VV	
Total Power Dissipation	T _A = 25°C	P_{D}	2.3	14/	
	T _A = 125°C		0.5	W	
Operating Junction and Storage Temp	perature Range	T _J , T _{STG}	- 55 to +150	°C	

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	LIMIT	UNIT	
Junction to Case Thermal Resistance	R _{eJC}	2.8	°C/W	
Junction to Ambient Thermal Resistance	R _{eJA}	53	°C/W	

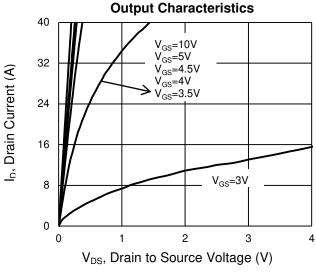
Thermal Performance Note: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case-thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design.

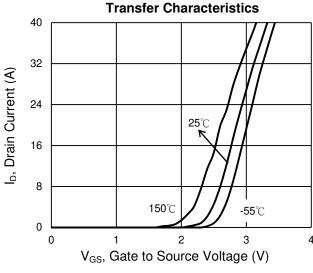
1

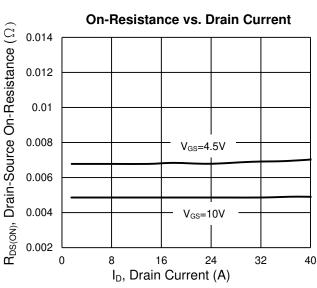
PARAMETERStaticDrain-Source Breakdown Voltage $V_{GS} = 0V$, $I_D = 250\mu A$ Gate Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250\mu A$ Gate-Source Leakage Current $V_{GS} = \pm 20V$, $V_{DS} = 0V$ Drain-Source Leakage Current $V_{GS} = 0V$, $V_{DS} = 30V$ Drain-Source On-State Resistance (Note 3) $V_{GS} = 10V$, $I_D = 15A$ Forward Transconductance (Note 3) $V_{DS} = 5V$, $I_D = 15A$ Dynamic (Note 4) $V_{GS} = 10V$, $V_{DS} = 15V$, $V_{DS} = 15V$, $V_{DS} = 15V$, $V_{DS} = 15V$	BV _{DSS}	MIN	TYP	MAX	UNIT
$\begin{array}{lll} \text{Drain-Source Breakdown Voltage} & V_{GS} = 0\text{V}, \ I_D = 250 \mu\text{A} \\ \\ \text{Gate Threshold Voltage} & V_{GS} = V_{DS}, \ I_D = 250 \mu\text{A} \\ \\ \text{Gate-Source Leakage Current} & V_{GS} = \pm 20\text{V}, \ V_{DS} = 0\text{V} \\ \\ V_{GS} = 0\text{V}, \ V_{DS} = 30\text{V} \\ \\ V_{GS} = 0\text{V}, \ V_{DS} = 30\text{V} \\ \\ V_{J} = 125^{\circ}\text{C} \\ \\ \text{Drain-Source On-State Resistance} & V_{GS} = 10\text{V}, \ I_D = 15\text{A} \\ \\ \text{V}_{GS} = 4.5\text{V}, \ I_D = 15\text{A} \\ \\ \text{Forward Transconductance} & V_{DS} = 5\text{V}, \ I_D = 15\text{A} \\ \\ \text{Dynamic} & V_{GS} = 10\text{V}, \ V_{DS} = 15\text{V}, \ I_D = 15\text{A} \\ \\ \text{Total Gate Charge} & V_{GS} = 10\text{V}, \ V_{DS} = 15\text{V}, \ I_D = 15\text{A} \\ \\ \end{array}$		I			
$ \begin{array}{lll} \text{Gate Threshold Voltage} & V_{\text{GS}} = V_{\text{DS}}, \ I_{\text{D}} = 250 \mu \text{A} \\ \\ \text{Gate-Source Leakage Current} & V_{\text{GS}} = \pm 20 \text{V}, \ V_{\text{DS}} = 0 \text{V} \\ \\ V_{\text{GS}} = 0 \text{V}, \ V_{\text{DS}} = 30 \text{V} \\ \\ V_{\text{GS}} = 0 \text{V}, \ V_{\text{DS}} = 30 \text{V} \\ \\ V_{\text{J}} = 125 ^{\circ} \text{C} \\ \\ \text{Drain-Source On-State Resistance} & V_{\text{GS}} = 10 \text{V}, \ I_{\text{D}} = 15 \text{A} \\ \\ \text{(Note 3)} & V_{\text{GS}} = 4.5 \text{V}, \ I_{\text{D}} = 15 \text{A} \\ \\ \text{Forward Transconductance} & V_{\text{DS}} = 5 \text{V}, \ I_{\text{D}} = 15 \text{A} \\ \\ \text{Dynamic} & V_{\text{GS}} = 10 \text{V}, \ V_{\text{DS}} = 15 \text{V}, \\ \\ I_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{DS}} = 15 \text{V}, \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} & V_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} \\ \\ \text{I}_{\text{D}} = 15 \text{A} \\ $					
$ \begin{array}{lll} \text{Gate-Source Leakage Current} & V_{\text{GS}} = \pm 20\text{V}, V_{\text{DS}} = 0\text{V} \\ & V_{\text{GS}} = 0\text{V}, V_{\text{DS}} = 30\text{V} \\ & V_{\text{GS}} = 0\text{V}, V_{\text{DS}} = 30\text{V} \\ & V_{\text{GS}} = 0\text{V}, V_{\text{DS}} = 30\text{V} \\ & V_{\text{J}} = 125^{\circ}\text{C} \\ & \text{Drain-Source On-State Resistance} \\ & (\text{Note 3}) & V_{\text{GS}} = 10\text{V}, I_{\text{D}} = 15\text{A} \\ & V_{\text{GS}} = 4.5\text{V}, I_{\text{D}} = 15\text{A} \\ & \text{Forward Transconductance} & V_{\text{DS}} = 5\text{V}, I_{\text{D}} = 15\text{A} \\ & \text{Dynamic} & \\ & V_{\text{GS}} = 10\text{V}, V_{\text{DS}} = 15\text{V}, \\ & I_{\text{D}} = 15\text{A} \\ & I_{\text{D}} = 15\text{A} \\ & \end{array} $	17	30			V
$\begin{array}{c} V_{GS} = 0 \text{V, } V_{DS} = 30 \text{V} \\ V_{GS} = 0 \text{V, } V_{DS} = 30 \text{V} \\ V_{TJ} = 125^{\circ}\text{C} \\ \\ \text{Drain-Source On-State Resistance} \\ \text{(Note 3)} & V_{GS} = 10 \text{V, } I_D = 15 \text{A} \\ V_{GS} = 4.5 \text{V, } I_D = 15 \text{A} \\ \\ \text{Forward Transconductance} & V_{DS} = 5 \text{V, } I_D = 15 \text{A} \\ \\ \textbf{Dynamic} & V_{GS} = 10 \text{V, } V_{DS} = 15 \text{V, } I_D = 15 \text{A} \\ \\ \textbf{Total Gate Charge} & V_{GS} = 10 \text{V, } V_{DS} = 15 \text{V, } I_D = 15 \text{A} \\ \\ \end{array}$	$V_{GS(TH)}$	1.2	1.9	2.5	V
$\begin{array}{ll} \text{Drain-Source Leakage Current} & V_{GS} = 0\text{V}, \ V_{DS} = 30\text{V} \\ T_J = 125^{\circ}\text{C} \\ \\ \text{Drain-Source On-State Resistance} & V_{GS} = 10\text{V}, \ I_D = 15\text{A} \\ \hline \text{(Note 3)} & V_{GS} = 4.5\text{V}, \ I_D = 15\text{A} \\ \\ \text{Forward Transconductance} & V_{DS} = 5\text{V}, \ I_D = 15\text{A} \\ \\ \hline \textbf{Dynamic} & V_{GS} = 10\text{V}, \ V_{DS} = 15\text{V}, \\ \hline \text{I}_D = 15\text{A} & I_D = 15\text{A} \\ \\ \hline \end{array}$	I _{GSS}			±100	nA
$T_{J} = 125^{\circ}\text{C}$ Drain-Source On-State Resistance (Note 3) $V_{GS} = 10V, I_{D} = 15A$ $V_{GS} = 4.5V, I_{D} = 15A$ Forward Transconductance (Note 3) $V_{DS} = 5V, I_{D} = 15A$ $Dynamic (Note 4)$ $V_{GS} = 10V, V_{DS} = 15V, I_{D} = 15A$ $V_{GS} = 10V, V_{DS} = 15V, I_{D} = 15A$				1	
$V_{GS} = 4.5V, \ I_D = 15A$ Forward Transconductance (Note 3) $V_{DS} = 5V, \ I_D = 15A$ $Dynamic \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	I _{DSS}			100	μΑ
Forward Transconductance (Note 3) $V_{DS} = 5V$, $I_D = 15A$ Dynamic (Note 4) Total Gate Charge $V_{GS} = 10V$, $V_{DS} = 15V$, $I_D = 15A$	_		4.8	6.1	mΩ
	$R_{DS(on)}$		6.7	8.1	
Total Gate Charge $\begin{aligned} V_{GS} &= 10V, \ V_{DS} = 15V, \\ I_{D} &= 15A \end{aligned}$	g _{fs}		51		S
Total Gate Charge I _D = 15A					
	Q_g		19.3		
Total Gate Charge	Q_g		9.6		nC
Gate-Source Charge $V_{GS} = 4.5V, V_{DS} = 15V,$	Q _{gs}		4		
Gate-Drain Charge I _D = 15A	Q_{gd}		3.7		
Input Capacitance	C _{iss}		1136		
Output Capacitance $V_{GS} = 0V, V_{DS} = 15V$	C _{oss}		273		pF
Reverse Transfer Capacitance f = 1.0MHz	C _{rss}		106]
Gate Resistance f = 1.0MHz	R_{g}	0.3	1	2	Ω
Switching (Note 4)					
Turn-On Delay Time	t _{d(on)}		11.6		
Turn-On Rise Time $V_{GS} = 10V$, $V_{DS} = 15V$,	t _r		5.8		
Turn-Off Delay Time $I_{D} = 7.5A, R_{G} = 10\Omega,$ $R_{L} = 2\Omega$	t _{d(off)}		34.4		ns
Turn-Off Fall Time	t _f		7.8]
Source-Drain Diode					
Forward Voltage (Note 3) $V_{GS} = 0V, I_S = 15A$	V _{SD}			1.2	V
Reverse Recovery Time I _S = 15A ,	1 -		1		
Reverse Recovery Charge dl/dt = 100A/μs	t _{rr}		23		ns

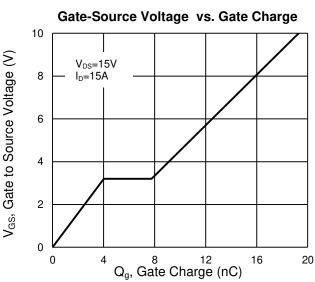
Notes:

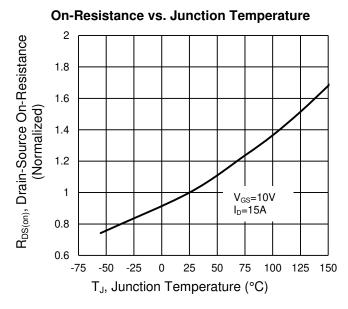
- 1. Silicon limited current only.
- 2. L = 0.3mH, $V_{GS} = 10V$, $V_{DD} = 25V$, $R_G = 25\Omega$, $I_{AS} = 20.5A$, Starting $T_J = 25^{\circ}C$
- 3. Pulse test: Pulse Width \leq 300 μ s, duty cycle \leq 2%.
- 4. Switching time is essentially independent of operating temperature.

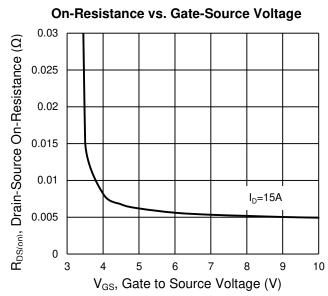

ORDERING INFORMATION

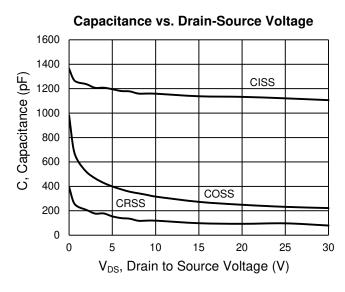

PART NO.	PACKAGE	PACKING
TSM061NA03CV RGG	PDFN33	5,000pcs / 13" Reel

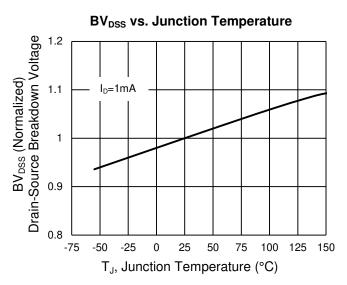


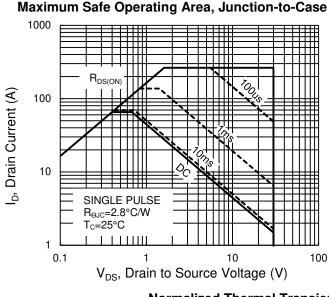

CHARACTERISTICS CURVES


 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

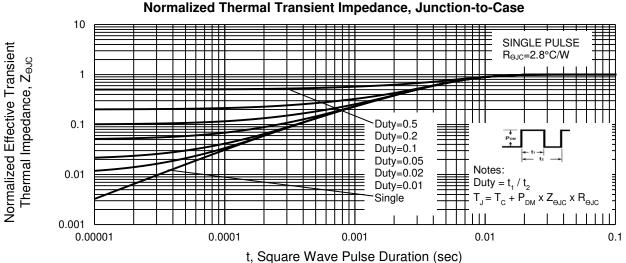




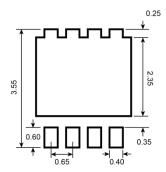




CHARACTERISTICS CURVES


 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

4



PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

PDFN33 0.40 ±0.10 0.65 (REF) 0.75 ±0.05 0.15 ±0.10 3.10 ±0.10 3.30 ±0.10

SUGGESTED PAD LAYOUT (Unit: Millimeters)

5

MARKING DIAGRAM

Y = Year Code

M = Month Code

O =Jan P =Feb Q =Mar R =Apr

 $S = May \quad T = Jun \quad U = Jul \quad V = Aug$

W = Sep X = Oct Y = Nov Z = Dec

L = Lot Code $(1\sim9, A\sim Z)$

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.