

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SOT-23

Pin Definition:

- 1. Gate
- 2. Source
- 3. Drain

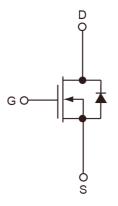
PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(\Omega)(max)$	I _D (A)
600	700 @ V _{GS} = 0V	0.03

Features

- **Depletion Mode**
- Low Gate Charge

Application


- Converters
- Telecom

Ordering Information

Part No.	Package	Packing		
TSM126CX RFG	SOT-23	3kpcs / 7" Reel		

Note: "G" denotes Halogen Free Product.

Block Diagram

N-Channel MOSFET

Absolute Maximum Ratings (Ta = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	600	V
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain Current	Tc=25°C		0.030	Α
Continuous Drain Current	Tc=70°C	l _D	0.024	А
Pulsed Drain Current ^a		I _{DM}	0.120	А
Maximum Power Dissipation		P _D	0.5	W
Soldering Temperature ^b		TL	300	°C
Operating Junction Temperature		TJ	+150	°C
Operating Junction and Storage Temperature F	Range	T _J , T _{STG}	-55 to +150	°C

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance, Junction to Ambient	$R\Theta_{JA}$	250	°C/W

1/7

Notes:

- a. Pulse width limited by the Maximum junction temperature
- b. Distance of 1.6mm from case for 10 seconds.

Version: A14

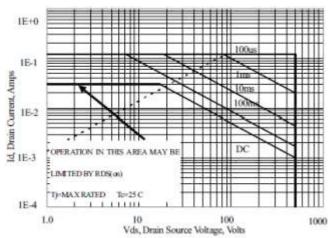
N-Channel Depletion-Mode MOSFET

Electrical Specifications (Tj = 25°C unless otherwise noted)

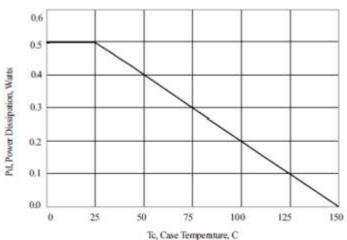
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static ^a						
Drain-Source Breakdown Voltage	$V_{GS} = -5V, I_D = 250\mu A$	BV _{DSS}	600			V
Gate Threshold Voltage	$V_{DS} = 3V, I_{D} = 8\mu A$	$V_{GS(TH)}$	-2.7	-1.8	-1.0	V
Drain-Source cutoff current	$V_{DS} = 600V, V_{GS} = -5V,$ $Ta = 25^{\circ}C$				0.1	μA
Drain-Source cutoff current	$V_{DS} = 480V, V_{GS} = -5V,$ Ta = 125°C	I _{DS(OFF)}			10	μA
Gate-Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±10	μA
On-state Drain Current	$V_{DS} = 25V, V_{GS} = 0V$	I _{DSS}	12			mA
	$V_{GS} = 0V$, $I_D = 3mA$			350	700	Ω
Drain-Source On-State Resistance	V _{GS} = 10V, I _D = 16mA	$R_{DS(ON)}$		400	800	Ω
Forward Transconductance	$ V_{DS} > 2 I_{D} R_{DS(ON)max},$ $I_{D} = 0.01A$	g _{fs}	0.008	0.017		S
Dynamic				•		
Input Capacitance)/ O5)/)/ 5)/	C _{iss}		51.42		pF
Output Capacitance	$V_{DS} = 25V, V_{GS} = -5V,$	C _{oss}		4.48		
Reverse Transfer Capacitance	f = 1.0MHz	C_{rss}		1.12		
Total Gate Charge	\/ - 400\/ I - 0.04A	Q_g		1.18		
Gate-Source Charge	$V_{DS} = 400V, I_D = 0.01A,$ $V_{GS} = -5V \text{ to } 5V$	Q_gs		0.49		nC
Gate-Drain Charge	V _{GS} = -5V 10 5V	Q_{gd}		0.365		
Switching						
Turn-On Delay Time	.,	t _{d(on)}		10.01		
Turn-On Rise Time	$V_{DD} = 300V, I_D = 0.01A,$	t _r		55.7		ns
Turn-Off Delay Time	V_{GS} = -5V to 7V, R_{G} = 6Ω	$t_{d(off)}$		57.2		
Turn-Off Fall Time		t _f		135.5		
Source-Drain Diode						
Diode forward Current	Continuous	I _S			0.025	Α
Diode Pulse Current		I _{SM}			0.100	Α
Diode Forward Voltage	I _{SD} = 16mA, V _{GS} = -5V	V_{SD}			1.2	V
Reverse Recovery Time	I _F =0.01A, V _{GS} =-10V	trr		243.1		ns
Reverse Recovery Charge	dl _F /dt=100A/µs, V _R =30V	Qrr		639		nC

Notes:

a. pulse test: PW $\leqslant\!380\mu s,$ duty cycle $\leqslant\!2\%$

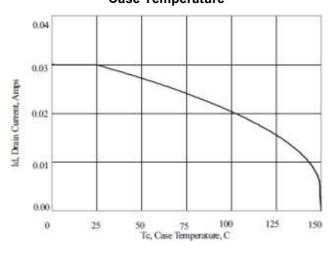


N-Channel Depletion-Mode MOSFET

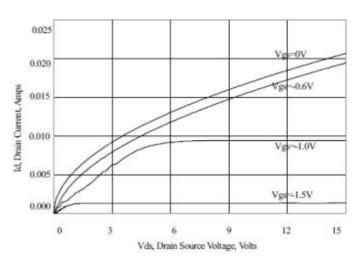


Electrical Characteristics Curves (Ta = 25°C, unless otherwise noted)

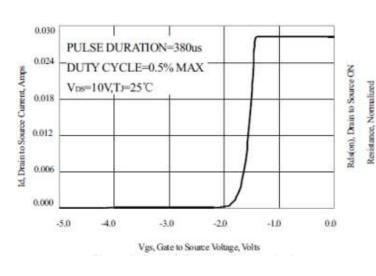
Maximum Forward Bias Safe Operation Area



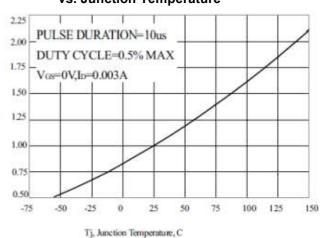
Maximum Power Dissipation vs. Case Temperature



Maximum Continuous Drain Current vs.


Case Temperature

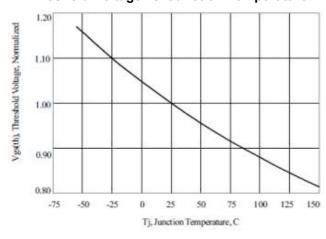
Typical Output Characteristics

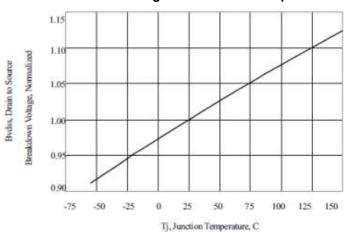


Typical Transfer Characteristics

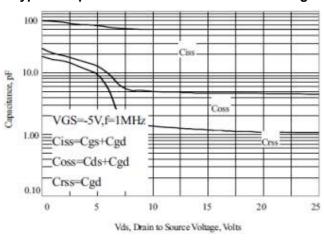
Drain to Source ON Resistance

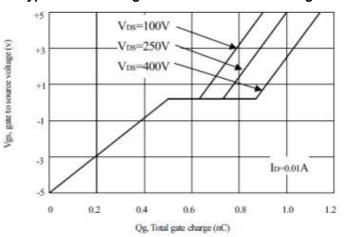
vs. Junction Temperature

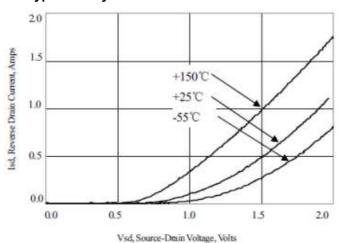



N-Channel Depletion-Mode MOSFET

Electrical Characteristics Curves (Ta = 25°C, unless otherwise noted)

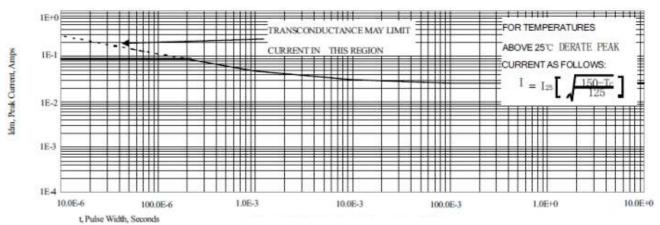

Threshold Voltage vs. Junction Temperature


Breakdown Voltage vs. Junction Temperature


Typical Capacitance vs. Drain to source Voltage

Typical Gate Charge vs. Gate to Source Voltage

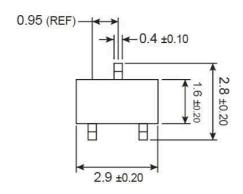
Typical Body Diode Transfer Characteristics

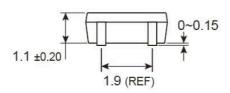


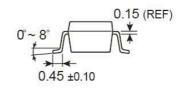
N-Channel Depletion-Mode MOSFET

Electrical Characteristics Curves (Ta = 25°C, unless otherwise noted)

Maximum Peak Current Capability






Pb RoHS

N-Channel Depletion-Mode MOSFET

SOT-23 Mechanical Drawing

Unit: Millimeters

TSM126 N-Channel Depletion-Mode MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.