

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

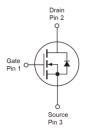
N-Channel Power MOSFET

 $600V, 1A, 10\Omega$

FEATURES

- Advanced planar process
- 100% avalanche tested
- Low $R_{DS(ON)}$ 8 Ω (Typ.)
- Low gate charge typical @ 6.1 nC (Typ.)
- Low Crss typical @4.2pF (Typ.)

KEY PERFORMANCE PARAMETERS				
PARAMETER VALUE UN				
$V_{ t DS}$	600	V		
R _{DS(on)} (max)	10	Ω		
Q_g	6.1	nC		



APPLICATION

- Power Supply
- Lighting
- Charger

Notes: MSL 3 (Moisture Sensitivity Level) for TO-252 (D-PAK), SOT-223 per J-STD-020

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)					
PARAMETER	SYMBOL	IPAK/DPAK	SOT-223	UNIT	
Drain-Source Voltage	V_{DS}	600		V	
Gate-Source Voltage	V_{GS}	±3	80	V	
Continuous Drain Current (Note 1) $ T_C = 25^{\circ}C $ $T_C = 100^{\circ}C $	I _D	0.	7	А	
Pulsed Drain Current (Note 2)	I _{DM}	4		Α	
Total Power Dissipation @ T _C = 25°C	P _{DTOT}	39	2.1	W	
Single Pulsed Avalanche Energy (Note 3)	E _{AS}	5	5	mJ	
Single Pulsed Avalanche Current (Note 3)	I _{AS}	1		Α	
Peak Diode Recovery dv/dt(Note 4)	dv/dt	4.5		V/ns	
Operating Junction and Storage Temperature Range	T_J, T_{STG}	- 55 to +150		°C	

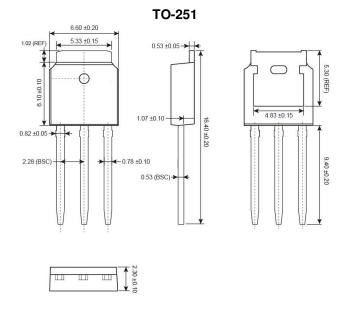
THERMAL PERFORMANCE				
PARAMETER	SYMBOL	IPAK/DPAK	SOT-223	UNIT
Junction to Case Thermal Resistance	R _{eJC}	2.87		°C/W
Junction to Ambient Thermal Resistance	R _{OJA}	110	60	°C/W

Notes: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JA}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. $R_{\Theta JA}$ shown below for single device operation on FR-4 PCB in still air.

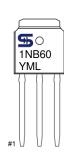
ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise noted)						
PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Static (Note 5)						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	600			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 0.5A$	R _{DS(ON)}		8	10	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	$V_{GS(TH)}$	2.5	3.5	4.5	٧
Zero Gate Voltage Drain Current	$V_{DS} = 600V, V_{GS} = 0V$	I _{DSS}			10	μΑ
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
Forward Transfer Conductance	$V_{DS} = 10V, I_D = 0.5A$	g _{fs}		0.8		S
Dynamic (Note 6)						
Total Gate Charge	.,	Q_g		6.1		
Gate-Source Charge	$V_{DS} = 480V, I_{D} = 1A,$ $V_{GS} = 10V$	Q_{gs}		1.4		nC
Gate-Drain Charge	V _{GS} = 10V	Q_{gd}		3.3		
Input Capacitance		C _{iss}		138		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	C _{oss}		17.1		pF
Reverse Transfer Capacitance		C_{rss}		4.2		
Gate Resistance	F = 1MHz, open drain	R_g		12.5		Ω
Switching (Note 7)						
Turn-On Delay Time		t _{d(on)}		7.7		
Turn-On Rise Time	$V_{DD} = 300V, R_G = 25\Omega$ $I_D = 1A, V_{GS} = 10V$	t _r		6.8		
Turn-Off Delay Time		$t_{d(off)}$		15.3		ns
Turn-Off Fall Time		t _f		14.9		
Source-Drain Diode (Note 5)						
Diode Forward Voltage	I _S = 1A, V _{GS} = 0V	V _{SD}		0.9	1.4	V
Source Current	Integral reverse diode	Is			1	
Source Current (Pulse)	In the MOSFET	I _{SM}			4	A

Notes:

- 1. Current limited by package.
- 2. Pulse width limited by the maximum junction temperature.
- 3. L = 10mH, $I_{AS} = 1A$, $V_{DD} = 50V$, $R_G = 25\Omega$, Starting $T_J = 25^{\circ}C$.
- 4. $I_{SD} \le 1A$, $V_{DD} \le BV_{DSS}$, $di/dt \le 200A/us$, Starting $T_J = 25^{\circ}C$.
- 5. Pulse test: PW \leq 300 μ s, duty cycle \leq 2%.
- 6. For DESIGN AID ONLY, not subject to production testing.
- 7. Switching time is essentially independent of operating temperature.


ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TSM1NB60CH C5G	TO-251	75 pcs / Tube
TSM1NB60CP ROG	TO-252	2,500 pcs / 13" Reel
TSM1NB60CW RPG	SOT-223	2,500 pcs / 13" Reel

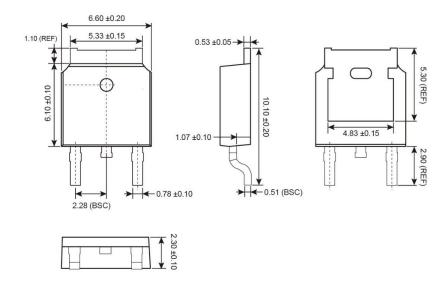

Note:

- 1. Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC
- 2. Halogen-free according to IEC 61249-2-21 definition

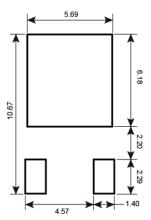
MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product


O =Jan P =Feb Q =Mar R =Apr S =May T =Jun U =Jul V =Aug

W = Sep X = Oct Y = Nov Z = Dec


L = Lot Code (1~9, A~Z)

TO-252

SUGGESTED PAD LAYOUT

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

O =Jan **P** =Feb **Q** =Mar

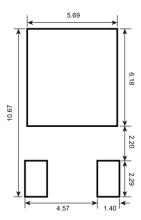
R =Apr

S =May **T** =Jun **U** =Jul

V =Aug

W =Sep X =Oct

Y =Nov


Z =Dec

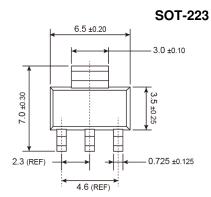
 $\mathbf{L} = \text{Lot Code } (1 \sim 9, A \sim Z)$

TO-252 6.57 ±0.16 1.08 ±0.19 0.515 ±0.065 5.34 ±0.13 5.3 (MIN) 6.11 ±0.11 -0.825 ± 0.185 9.9 ± 0.5 0.127 (MAX) 2.743 0.525 ±0.075 0.955 ±0.185 -1.585 ±0.185 0.76 ±0.12 0.508 (BSC) 2.286 (BSC)

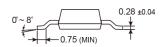
SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

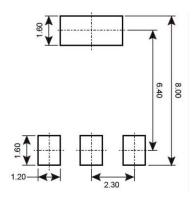
Y = Year Code


M = Month Code for Halogen Free Product


 \mathbf{O} =Jan \mathbf{P} =Feb \mathbf{Q} =Mar \mathbf{R} =Apr


S =May T =Jun U =Jul V =Aug W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code (1~9, A~Z)



SUGGESTED PAD LAYOUT

MARKING DIAGRAM

Y = Year Code

M = Month Code for Halogen Free Product

 \mathbf{O} =Jan \mathbf{P} =Feb \mathbf{Q} =Mar \mathbf{R} =Apr

 $\textbf{S} = \textbf{May} \quad \textbf{T} = \textbf{Jun} \quad \textbf{U} = \textbf{Jul} \quad \textbf{V} = \textbf{Aug}$

W = Sep X = Oct Y = Nov Z = Dec

L = Lot Code $(1 \sim 9, A \sim Z)$

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.