imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SOP-8	Р
	1
4	2
3 5	2 3
	4
8 1	

Pin Definition:

1. Source 1	8. Drain 1
2. Gate 1	7. Drain 1
Source 2	6. Drain 2
4. Gate 2	5. Drain 2

PRODUCT SUMMARY

G1 C

V _{DS} (V)	R _{DS(on)} (mΩ)	I _D (A)
00	55 @ V _{GS} = 10V	4.5
60	75 @ V _{GS} = 4.5V	3.9

Block Diagram

D₁

S-

Features

- Advance Trench Process Technology
- High Density Cell Design for Ultra Low On-resistance

Application

- High-Side DC/DC Conversion
- Notebook
- Sever

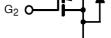
Ordering Information

Part No.	Package	Packing
TSM4946DCS RL	SOP-8	2.5Kpcs / 13" Reel
TSM4946DCS RLG	SOP-8	2.5Kpcs / 13" Reel

Note: "G" denote for Green Product

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	60	V	
Gate-Source Voltage		V _{GS}	±20	V	
Continuous Drain Current		Ι _D	4.5	A	
Pulsed Drain Current		I _{DM}	30	A	
Continuous Source Current (Diode C	Conduction) ^{a,b}	ls	2	A	
	Ta = 25°C	n n	2.4	w	
Maximum Power Dissipation	Ta = 75°C	P _D	1.7		
Operating Junction Temperature		TJ	+150	°C	
Operating Junction and Storage Temperature Range		T _J , T _{STG}	- 55 to +150	°C	


Thermal Performance

Parameter	Symbol	Limit	Unit
Junction to Case Thermal Resistance	RƏ _{JF}	32	°C/W
Junction to Ambient Thermal Resistance (PCB mounted)	RƏ _{JA}	62.5	°C/W

Notes:

a. Pulse width limited by the Maximum junction temperature

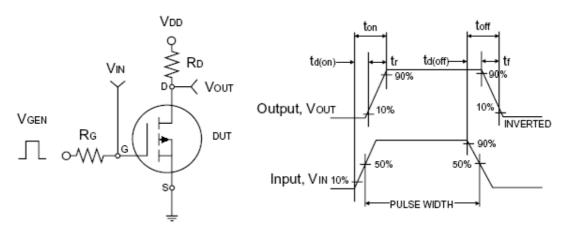
b. Surface Mounted on FR4 Board, t \leq 10 sec.

D₂

S₂

Dual N-Channel MOSFET

Electrical Specifications

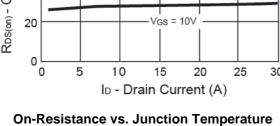

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static				•	•	
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250uA$	BV_{DSS}	60			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	V _{GS(TH)}	1		3	V
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
Zero Gate Voltage Drain Current	$V_{\text{DS}} = 60 V, \ V_{\text{GS}} = 0 V$	I _{DSS}			2	μA
On-State Drain Current ^a	$V_{DS} = 5V, V_{GS} = 10V$	I _{D(ON)}	20			Α
Drein Course On State Desistence ^a	$V_{GS} = 10V, I_{D} = 4.5A$	P		45	55	
Drain-Source On-State Resistance	rain-Source On-State Resistance ^a $V_{GS} = 4.5V, I_D = 3.9A$ $R_{DS(ON)}$		55	75	mΩ	
Forward Transconductance ^a	$V_{DS} = 15V, I_{D} = 4.5A$	g _{fs}		13		S
Diode Forward Voltage	$I_S = 2A, V_{GS} = 0V$	V _{SD}		0.9	1.2	V
Dynamic [♭]						
Total Gate Charge		Q _g		19	30	
Gate-Source Charge	$V_{DS} = 30V, I_D = 4.5A,$	Q _{gs}		4		nC
Gate-Drain Charge	$V_{GS} = 10V$	Q_{gd}		3		
Input Capacitance		C _{iss}		910		
Output Capacitance	$V_{DS} = 24V, V_{GS} = 0V,$	C _{oss}		145		pF
Reverse Transfer Capacitance	f = 1.0MHz	C _{rss}		67		
Switching ^c						
Turn-On Delay Time		t _{d(on)}		13	20	
Turn-On Rise Time	$V_{DD} = 30V, R_L = 30\Omega,$ $I_D = 1A, V_{GEN} = 10V,$	t _r		11	20	
Turn-Off Delay Time		t _{d(off)}		36	60	nS
Turn-Off Fall Time	$R_{G} = 6\Omega$	t _f		11	20	

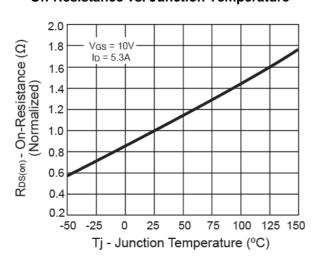
Notes:

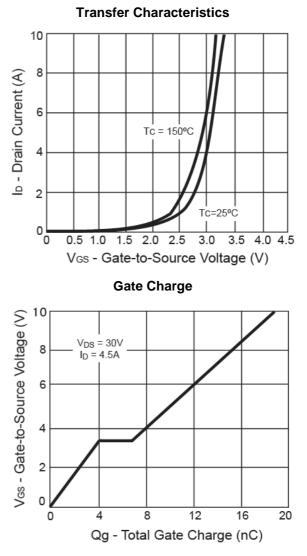
a. pulse test: PW \leq 300µS, duty cycle \leq 2%

b. For DESIGN AID ONLY, not subject to production testing.

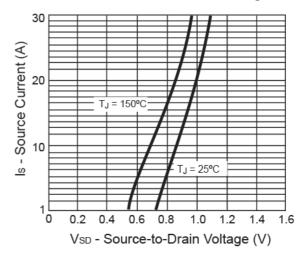
b. Switching time is essentially independent of operating temperature.


Switching Test Circuit


Switchin Waveforms



Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)



Source-Drain Diode Forward Voltage

0.1

0.05

0.02

10-3

0.1

0.01

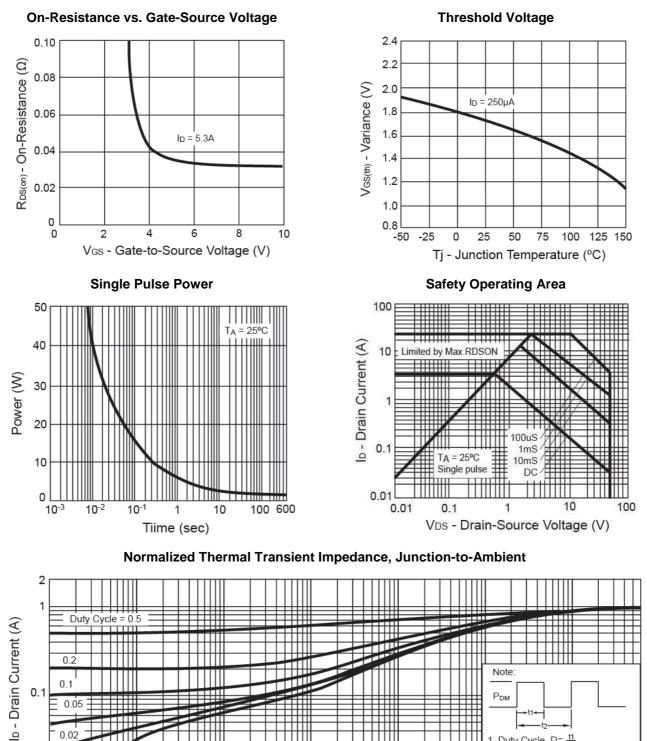
10-4

TSM4946D 60V Dual N-Channel MOSFET

Note

PDM

10


1. Duty Cycle, D= $\frac{t1}{t2}$ 2. Per Unit Base = R_{thJA} =62.5°C/W

100

3. TJM - TA = PDMZthJA

4. Surface Mounted

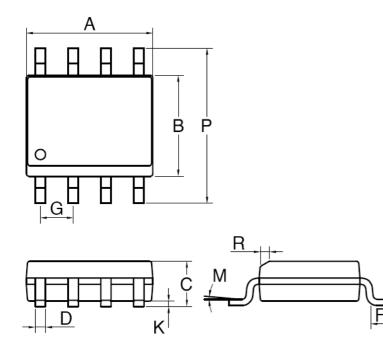
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

600

Single Pulse

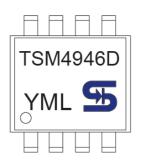
10-2

1.1


10-1

Square Wave Pulse Duration (sec)

1



SOP-8 Mechanical Drawing

SOP-8 DIMENSION					
DIM	MILLIMETERS		INCHES		
DIN	MIN	MAX	MIN	MAX.	
Α	4.80	5.00	0.189	0.196	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27BSC		0.05BSC		
K	0.10	0.25	0.004	0.009	
М	0º	7⁰	0º	7 <u>⁰</u>	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Marking Diagram

- Y = Year Code
- M = Month Code
 - (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)
 - = Month Code for Halogen Free Product
 - (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)
- L = Lot Code

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.