

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

700V N-Channel Power MOSFET

ITO-220

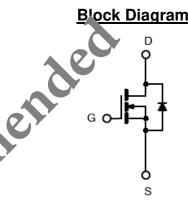
Pin Definition:

- 1. Gate 2. Drain
- 3. Source

PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(\Omega)(max)$	I _D (A)
700	0.9 @ V _{GS} =10V	8

General Description


The TSM8N70 N-Channel enhancement mode Power MOSFET is produced by planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

Features

- Low $R_{DS(ON)} 0.75\Omega$ (Typ.)
- Low gate charge typical @ 32nC (Typ.)
- Low Crss typical @ 13.7pF (Typ.)
- Fast Switching

Ordering Information

Part No.	Package	Packing
TSM8N70CI C0	ITO-220	50pcs / Tube
TSM8N70CI C0G	ITO-220	50pcs / Tube

N-Channel MOSFET

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V_{DS}	700	V	
Gate-Source Voltage	V_{GS}	±30	V	
Continuous Drain Current	- I _D	8	Α	
Tc = 100°C		4.8	Α	
Pulsed Drain Current *	I _{DM}	32	Α	
Single Pulse Avalanche Energy (Note 2)	E _{AS}	266	mJ	
Avalanche Current (Repetitive) (Note 2	I _{AS}	8	Α	
Single Pulse Avalanche Energy (Note 1)	E _{AR}	11.6	mJ	
Avalanche Current (Repetitive) (Note 1)	I _{AR}	8	Α	
Total Power Dissipation @ T _C = 25°C	P _{TOT}	40	W	
Operating Junction Temperature	TJ	150	ōС	
Storage Temperature Range	T _{STG}	-55 to +150	°C	

Note: Limited by maximum junction temperature

Thermal Performance

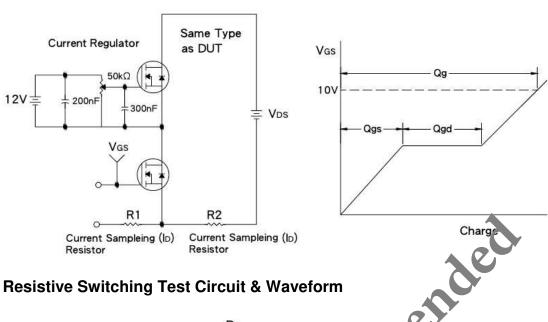
Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Case	R⊖ _{JC}	3.1	°C/W
Thermal Resistance - Junction to Ambient	RO _{JA}	62.5	°C/W

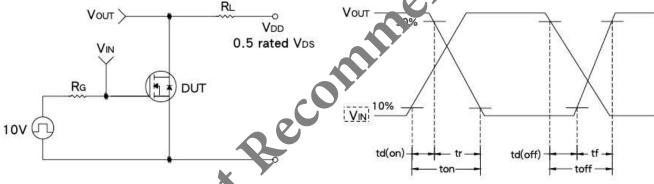
Notes: Surface mounted on FR4 board t ≤ 10sec

700V N-Channel Power MOSFET

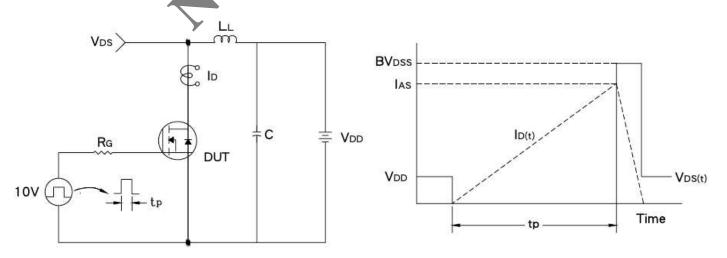
Electrical Specifications (Ta = 25°C unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250uA$	BV_{DSS}	700	1		V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 4A$	R _{DS(ON)}	1	0.75	0.9	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250uA$	$V_{GS(TH)}$	2.0	1	4.0	V
Zero Gate Voltage Drain Current	$V_{DS} = 700V, V_{GS} = 0V$	I _{DSS}	1	1	1	uA
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±10	uA
Forward Transfer Conductance	$V_{DS} = 10V, I_D = 4A$	g _{fs}		11		S
Dynamic						
Total Gate Charge	\/ FCO\/ OA	Q_g		32		
Gate-Source Charge	$V_{DS} = 560V, I_{D} = 8A,$	Q_gs	1	9		nC
Gate-Drain Charge	$V_{GS} = 10V$	Q_{gd}	1	8		
Input Capacitance	V 05V V 0V	C _{iss}		2006		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	Coss		148		pF
Reverse Transfer Capacitance	f = 1.0MHz	rss		13.7		
Switching		2,7				
Turn-On Delay Time		t _{d(on)}		23		
Turn-On Rise Time	$V_{GS} = 10V, I_D = 10A$	t _r		69		nS
Turn-Off Delay Time	$V_{DD} = 300V, R_{G} = 2$	$t_{d(off)}$		144		113
Turn-Off Fall Time		t _f		77		
Source-Drain Diode Ratings and Ch	aracteristic					
Source Current	Integrativeverse diode in	Is			8	Α
Source Current (Pulse)	19 40SFET	I _{SM}			32	Α
Diode Forward Voltage	$I_S = 3A$, $V_{GS} = 0V$	$V_{ extsf{SD}}$			1.4	V
Reverse Recovery Time	$V_{GS} = 0V, I_S = 8A,$	t _{fr}		420		nS
Reverse Recovery Charge	dl _F /dt = 100A/us	Q_{fr}		4.2		uC


Note 1: Repetitive Rating: Pulse width Limited by Maximum Junction Temperature Note 2: $V_{DD} = 50V$, $I_{AS} = 8A$, L = 7.74mH, $R_{G} = 25\Omega$, Starting $T_{J} = 25^{\circ}C$ Note 3: Pulse test: pulse width ≤ 300 uS, duty cycle $\leq 2\%$ Note 4: Essentially Independent of Operating Temperature

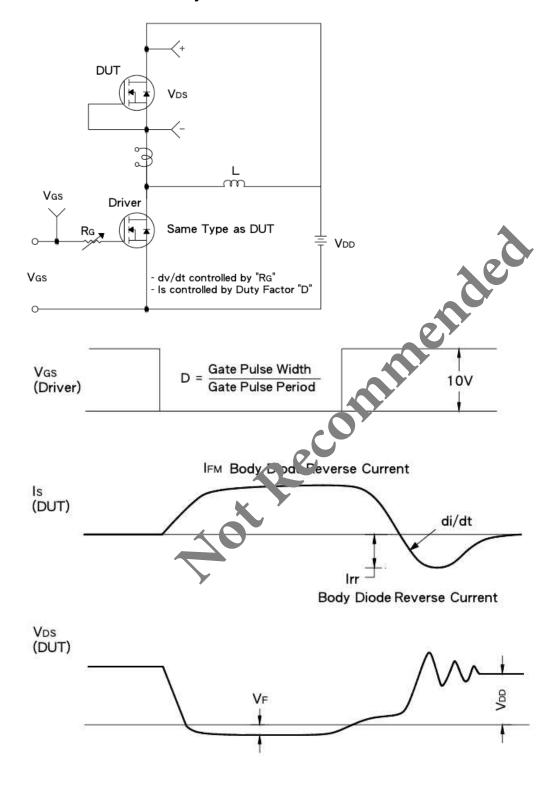


700V N-Channel Power MOSFET

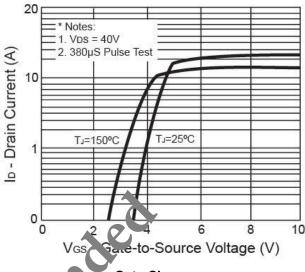


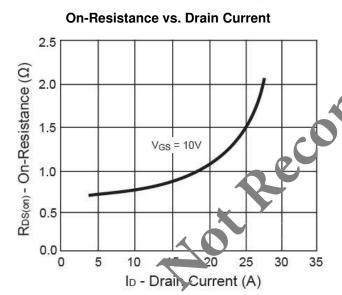
Gate Charge Test Circuit & Waveform

E_{AS} Test Circuit & Waveforn

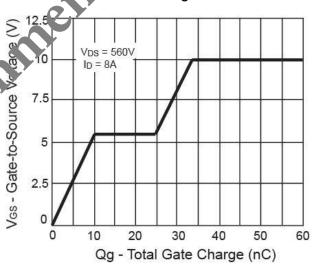


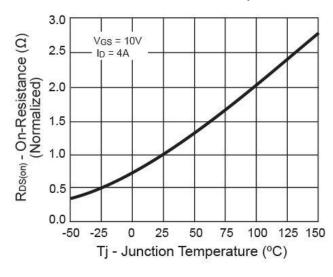
Diode Reverse Recovery Time Test Circuit & Waveform

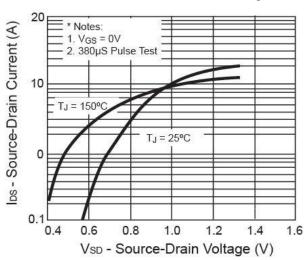




Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

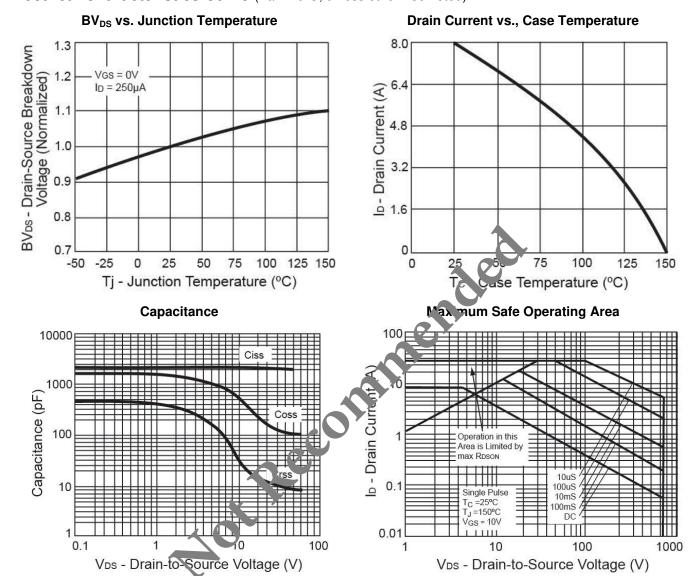

Output Characteristics 20 * Notes: 1. 380µS Pulse Test 2. TJ=25°C 16 Ib - Drain Current (A) V_{GS} = 7~5.5V 12 8 5V 4.5V 0 20 8 12 4 16 0 V_{DS} - Drain-to-Source Voltage (V)




Gate Charge

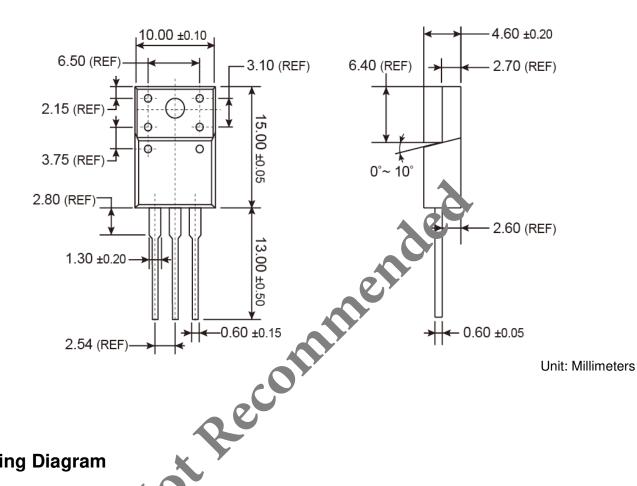
On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

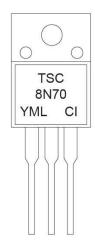


700V N-Channel Power MOSFET

Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


6/8

Version: D1707



ITO-220 Mechanical Drawing

Marking Diagram

'ear Code Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) = Lot Code

TSM8N70 700V N-Channel Power MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.