imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Superscalar (3 Instructions per Clock Peak)
- Dual 16 KB Caches
- Selectable Bus Clock
- 32-bit Compatibility PowerPC Implementation
- On-chip Debug Support
- Nap, Doze and Sleep Power Saving Modes
- Device Offered in Cerquad, CBGA 255, HiTCE CBGA 255 and CI-CGA 255

Features Specific to CBGA 255, HiTCE CBGA 255 and CI-CGA 255

- 7.4 SPECint95, 6.1 SPECfp95 at 300 MHz (Estimated)
- P_D Typically = 3.5W (266 MHz), Full Operating Conditions
- Branch Folding
- 64-bit Data Bus (32-bit Data Bus Option)
- 4-Gbytes Direct Addressing Range
- Pipelined Single/Double Precision Float Unit
- IEEE 754 Compatible FPU
- IEEE P 1149-1 Test Mode (JTAG/C0P)
- f_{INT} Max = 300 MHz
- f_{BUS} Max = 75 MHz
- Compatible CMOS Input/TTL Output

Features Specific to Cerquad

- 5.6 SPECint95, 4 SPECfp95 and 200 MHz (Estimated)
- P_D Typically = 2.5W (200 MHz), Full Operating Conditions

1. Description

The PID7t-603e implementation of the PowerPC 603e (renamed after the 603R) is a low-power implementation of the Reduced Instruction Set Computer (RISC) microprocessor PowerPC family. The 603R is pin-to-pin compatible with the PowerPC 603e and 603P in a Cerquad package. The 603R implements 32-bit effective addresses, integer data types of 8, 16 and 32 bits, and floating-point data types of 32 and 64 bits.

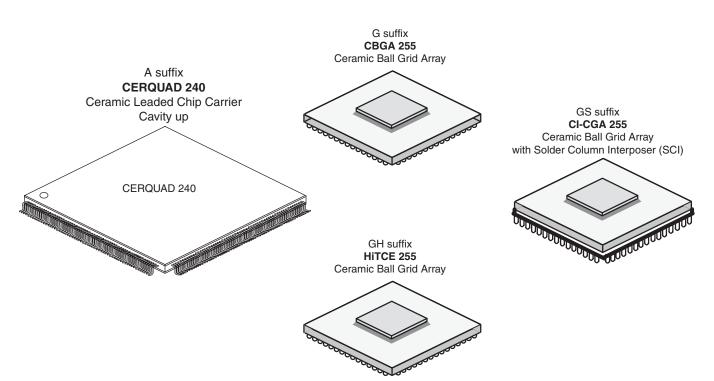
The 603R is a low-power 2.5/3.3V design and provides four software controllable power-saving modes. This device is a superscalar processor capable of issuing and retiring as many as three instructions per clock. Instructions can be executed in any order for increased performance, but, the 603R makes completion appear sequential. It integrates five execution units and is able to execute five instructions in parallel.

The 603R provides independent on-chip, 16-Kbyte, four-way set-associative, physically addressed caches for instructions and data, as well as on-chip instructions, and data Memory Management Units (MMUs). The MMUs contain 64-entry, two-way set-associative, data and instruction translation look aside buffers that provide support for demand-paged virtual memory address translation and variable-sized block translation. The 603R has a selectable 32- or 64-bit data bus and a 32-bit address bus. The interface protocol allows multiple masters to compete for system resources through a central external arbiter. The device supports single-beat and burst data transfers for memory accesses, and supports memory-mapped I/Os.

PowerPC[®] 603e RISC Microprocessor Family PID7t-603e

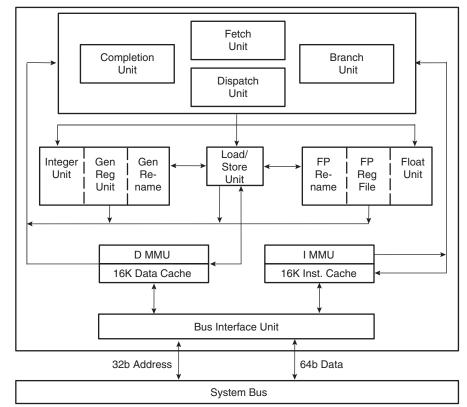
TSPC603R

Rev. 5410B-HIREL-09/05



The 603R uses an advanced, 2.5/3.3V CMOS process technology and maintains full interface compatibility with TTL devices. It also integrates in-system testability and debugging features through JTAG boundary-scan capabilities.

2. Screening/Quality/Packaging


This product is manufactured in full compliance with:

- HITCE CBGA according to Atmel Standards
- CI-CGA 255 and Cerquad: MIL-PRF-38535 class Q or according to Atmel standards
- CBGA 255: Upscreenings based upon Atmel standards
- CBGA, CI-CGA, HiTCE packages:
 - Full military temperature range ($T_c = -55^{\circ}C$, $T_i = +125^{\circ}C$)
 - Industrial temperature range ($T_c = -40^{\circ}C, T_i = +110^{\circ}C$)
- Cerquad:
 - Full military temperature range ($T_c = -55^{\circ}C$, $T_c = +125^{\circ}C$)
 - Industrial temperature range ($T_c = -40^{\circ}C$, $T_c = +110^{\circ}C$)
 - Commercial temperature ranges ($T_c = 0^\circ C$, $T_c = +70^\circ C$)
- Internal I/O Power Supply = $2.5 \pm 5\%$ // $3.3V \pm 5\%$

3. Block Diagram

4. Overview

The 603R is a low-power implementation of the PowerPC microprocessor family of Reduced Instruction Set Computing (RISC) microprocessors. The 603R implements the 32-bit portion of the PowerPC architecture, which provides 32-bit effective addresses, integer data types of 8, 16 and 32 bits, and floating-point data types of 32 and 64 bits. For 64-bit PowerPC microprocessors, the PowerPC architecture provides 64-bit integer data types, 64-bit addressing, and other features required to complete the 64-bit architecture.

The 603R provides four software controllable power-saving modes. Three of the modes (nap, doze, and sleep) are static in nature, and progressively reduce the amount of power dissipated by the processor. The fourth is a dynamic power management mode that causes the functional units in the 603R to automatically enter a low-power mode when the functional units are idle without affecting operational performance, software execution, or any external hardware.

The 603R is a superscalar processor capable of issuing and retiring as many as three instructions per clock. Instructions can be executed in any order for increased performance, but, the 603R makes completion appear sequential.

The 603e integrates five execution units:

- an Integer Unit (IU)
- a Floating-point Unit (FPU)
- a Branch Processing Unit (BPU)

- a Load/Store Unit (LSU)
- a System Register Unit (SRU)

The ability to execute five instructions in parallel and the use of simple instructions with rapid execution times yield high efficiency and throughput for 603R-based systems. Most integer instructions execute in one clock cycle. The FPU is pipelined so a single-precision multiply-add instruction can be issued every clock cycle.

The 603R provides independent on-chip, 16 Kbyte, four-way set-associative, physically addressed caches for instructions and data, as well as on-chip instruction and data Memory Management Units (MMUs). The MMUs contain 64-entry, two-way set-associative, Data and Instruction Translation Lookaside Buffers (DTLB and ITLB) that provide support for demand-paged virtual memory address translation and variable-sized block translation. The TLBs and caches use a Least Recently Used (LRU) replacement algorithm. The 603R also supports block address translation through the use of two independent Instruction and Data Block Address Translation (IBAT and DBAT) arrays of four entries each. Effective addresses are compared simultaneously with all four entries in the BAT array during block translation. In accordance with the PowerPC architecture, if an effective address hits in both the TLB and BAT array, the BAT translation has priority.

The 603R has a selectable 32- or 64-bit data bus and a 32-bit address bus. The 603R interface protocol allows multiple masters to compete for system resources through a central external arbiter. The 603R provides a three-state coherency protocol that supports the exclusive, modified, and invalid cache states. This protocol is a compatible subset of the MESI (Modified/Exclusive/Shared/Invalid) four-state protocol and operates coherently in systems that contain four-state caches. The 603R supports single-beat and burst data transfers for memory accesses, and supports memory-mapped I/Os.

The 603R uses an advanced, 0.29 μm 5-metal-layer CMOS process technology and maintains full interface compatibility with TTL devices.

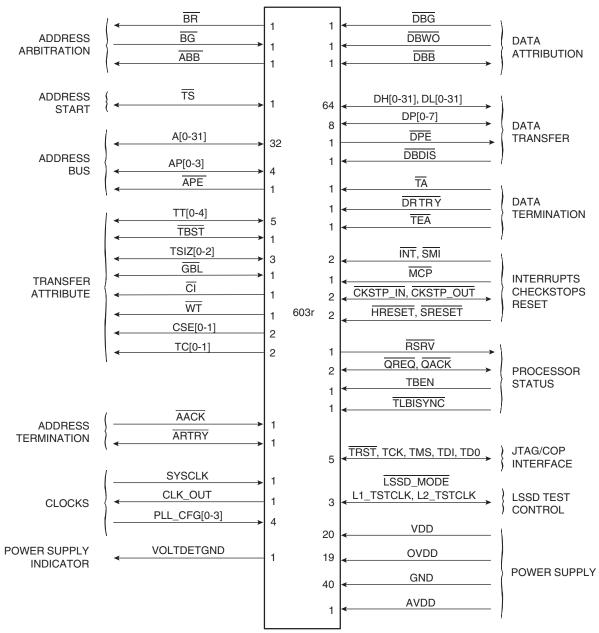

5. Signal Description

Figure 5-1 on page 5, Table 10-5 and Table 10-6 on page 20 describe the signals on the TSPC603R and indicate signal functions. The test signals, TRST, TMS, TCK, TDI and TDO, comply with the subset P-1149.1 of the IEEE testability bus standard.

The three signals $\overline{LSSD_MODE}$, LI_TSTCLK and L2_TSTCLK are test signals for factory use only and must be pulled up to V_{DD} for normal machine operations.

TSPC603R

Figure 5-1. Functional Signal Groups

6. Detailed Specifications

This specification describes the specific requirements for the microprocessor TSPC603R, in compliance with MIL-STD-883 class B or Atmel standard screening.

7. Applicable Documents

- 1. MIL-STD-883: Test methods and procedures for electronics
- 2. MIL-PRF-38535: General specifications for microcircuits

The microcircuits are in accordance with the applicable documents and as specified herein.

7.1 Design and Construction

7.1.1 Terminal Connections

Depending on the package, the terminal connections are as shown in Table 10-2 on page 15, Table 10-4 on page 18, "Recommended Operating Conditions" on page 6, Figure 15-2 on page 49, Figure 15-4 on page 52 and Figure 5-1 on page 5.

7.1.2 Lead Material and Finish

Lead material and finish shall be as specified in MIL-STD-1835. (See "Package Mechanical Data" on page 47.)

7.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only and functional operation at the maximum is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

Parameter	Symbol	Min	Max	Unit
Core supply voltage	V _{DD}	-0.3	2.75	V
PLL supply voltage	AV _{DD}	-0.3	2.75	V
I/O supply voltage	OV _{DD}	-0.3	3.6	V
Input voltage	V _{IN}	-0.3	5.5	V
Storage temperature range	T _{STG}	-55	+150	°C

7.2.1 Absolute Maximum Ratings for the 603R⁽¹⁾⁽²⁾⁽³⁾

Notes: 1. **Caution**: The input voltage must not be greater than OV_{DD} by more than 2.5V at any time, including during power-on reset.

- Caution: The OV_{DD} voltage must not be greater than V_{DD}/AV_{DD} by more than 1.2V at any time, including during power-on reset.
- 3. **Caution**: The V_{DD}/AV_{DD} voltage must not be greater than OV_{DD} by more than 0.4V at any time, including during power-on reset.

Functional operating conditions are given in AC and DC electrical specifications. Stresses beyond the absolute maximums listed may affect device reliability or cause permanent damage to the device.

7.2.2 Recommended Operating Conditions

The following are the recommended and tested operating conditions. Proper device operation outside of these ranges is not guaranteed.

7.2.3 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Core supply voltage	V _{DD}	2.375	2.625	V
PLL supply voltage	AV _{DD}	2.375	2.625	V
I/O supply voltage	OV _{DD}	3.135	3.465	V
Input voltage	V _{IN}	GND	5.5	V
Operating temperature	T _c	-55	+125	°C
Junction operating temperature specific to Cerquad	Tj	-	+135	°C

8. Thermal Characteristics

8.1 CBGA 255 and CI-CGA 255 Packages

The data found in this section concerns 603R devices packaged in the 255-lead 21 mm multi-layer ceramic (MLC) and ceramic BGA package. Data is included for use with a Thermalloy #2328B heat sink.

The internal thermal resistance for this package is negligible due to the exposed die design. A thermal interface material is recommended at the package lid to heat sink interface to minimize the thermal contact resistance.

Additionally, the CBGA package offers an excellent thermal connection to the card and power planes. Heat generated at the chip is dissipated through the package, the heat sink (when used) and the card. The parallel heat flow paths result in the lowest overall thermal resistance as well as offer significantly better power dissipation capability if a heat sink is not used.

The thermal characteristics for the flip-chip CBGA and CI-CGA packages are as follows:

Thermal resistance (junction-to-case) = R_{jc} or θ_{ic} = 0.095°C/Watt for the 2 packages.

Thermal resistance (junction-to-ball) = R_{jb} or θ_{jb} = 3.5°C/Watt for the CBGA package.

Thermal resistance (junction-to-bottom SCI) = R_{js} or $\theta_{is} = 3.7^{\circ}$ C/Watt for the CI-CGA package.

The junction temperature can be calculated from the junction to ambient thermal resistance, as follow:

Junction temperature:

 $T_{i} = T_a + (R_{ic} + R_{cs} + R_{sa}) \times P$

where:

T_a is the ambient temperature in the vicinity of the device

R_{ic} is the die junction to case thermal resistance of the device

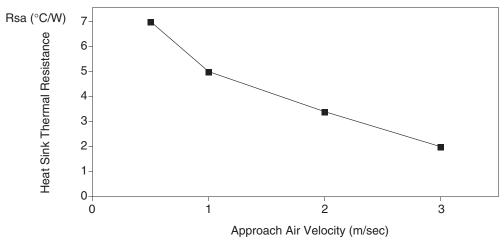
R_{cs} is the case to heat sink thermal resistance of the interface material

R_{sa} is the heat sink to ambient thermal resistance

P is the power dissipated by the device

During operation, the die-junction temperatures (T_j) should be maintained at a lower value than the value specified in "Recommended Operating Conditions" on page 6.

The thermal resistance of the thermal interface material (R_{cs}) is typically about 1°C/Watt.


Assuming a T_a of 85°C and a consumption (P) of 3.6 Watts, the junction temperature of the device would be as follow:

 $T_{i=}85^{\circ}C + (0.095^{\circ}C/Watt + 1^{\circ}C/Watt + R_{sa}) \times 3.5$ Watts.

For the Thermalloy heat sink #2328B, the heat sink-to-ambient thermal resistance (R_{sa}) versus airflow velocity is shown in Figure 8-1.

Assuming an air velocity of 1 m/sec, the associated overall thermal resistance and junction temperature, found in Table 8-1 will result.

Table 8-1.	Thermal Resistance and Junction Temperature
------------	---

Configuration	R _{ja} (°C/W)	Т _ј (°С)
With 2328B heat sink	5	106

Vendors such as Aavid, Thermalloy[®], and Wakefield Engineering can supply heat sinks with a wide range of thermal performance.

8.2 **HITCE CBGA Package**

Table 8-2.	HiTCE CBGA Package
------------	--------------------

Characteristic	Symbol	Value	Unit
Junction-to-bottom of balls ⁽¹⁾	$R\theta_J$	7.5	°C/W
Junction-to-ambient thermal resistance natural convection, four-layer (2s2p) board	$R\theta_{JMA}$	22.4 ⁽²⁾	°C/W
Junction to board thermal resistance	$R\theta_{JB}$	11.7 ⁽³⁾	°C/W
Notes: 1. Simulation, no convection air flow.			

1. Simulation, no convection air flow.

2. Per JEDEC JESD51-2 with the board horizontal.

3. Per JEDEC JESD51-8 with the board horizontal.

8.3 CERQUAD 240 Package

This section provides thermal management data for the 603R. This information is based on a typical desktop configuration using a 240 lead, 32 mm x 32 mm, wire-bond CERQUAD package with the cavity up (the silicon die is attached to the bottom of the package). This configuration enables dissipation through the PCB.

The thermal characteristics for a wire-bond CERQUAD package are as follows:

- Thermal resistance (junction to bottom of the case) (typical) = $R_{\theta jc}$ or θ_{jc} = 2.5°C/Watt
- Thermal resistance (junction to top of the case) is typically 16°C/W

TSPC603R

8.3.1 Thermal Management Example

The junction temperature can be calculated from the junction to ambient thermal resistance, as follows:

Junction temperature:

$$\begin{split} T_{j} &= T_{C} + R_{\theta j c} \times P \\ T_{j} &= T_{a} + (R_{cs} + R_{sa}) \times P + R_{\theta j c} \times P \end{split}$$

so

 $T_i = T_a + (R_{\theta ic} + R_{cs} + R_{sa}) \times P$

Where:

T_a is the ambient temperature in the vicinity of the device

 $R_{\theta ia}$ is the junction to ambient resistance

 $R_{\theta ic}$ is the junction to case thermal resistance of the device

R_{cs} is the case to heat sink thermal resistance of the interface material

R_{sa} is the heat sink to ambient thermal resistance

P is the power dissipated by the device

Because dissipation is made through the PCB, R_{cs} and R_{sa} are user values, and can vary considerably depending on the customer's application.

In a typical customer application, if R_{cs} is 0.5°C/W, R_{sa} is 3°C/W and Ta is 110°C, T_j can be estimated.

 $T_i = 110^{\circ}C + (2.5 + 0.5 + 3) \times 2.5 = 125^{\circ}C$

Note that verification of external thermal resistance and case temperature should be performed for each application. Thermal resistance depends on many factors including the amount of air turbulence and can therefore vary considerably.

9. Power Consideration

The PowerPC 603R is a microprocessor specifically designed for low-power operation. Like the 603e microprocessor version, the 603R provides both automatic and program-controllable power reduction modes for progressive reduction of power consumption. This section describes the hardware support provided by the 603R for power management.

9.1 Dynamic Power Management

Dynamic power management automatically powers up and down the individual execution units of the 603R, based upon the contents of the instruction stream. For example, if no floating-point instructions are being executed, the floating-point unit is automatically powered down. Power is not actually removed from the execution unit; instead, each execution unit has an independent clock input, which is automatically controlled on a clock-by-clock basis. Since CMOS circuits consume negligible power when they are not switching, stopping the clock to an execution unit effectively eliminates its power consumption. The operation of DPM is completely transparent to software or any external hardware. Dynamic power management is enabled by setting bit 11 in HID0 on power-up, following HRESET.

9.2 Programmable Power Modes

The 603R provides four programmable power states, full power, doze, nap and sleep. The software selects these modes by setting one (and only one) of the three power saving mode bits. The hardware can enable a power management state through external asynchronous interrupts. The hardware interrupt causes the transfer of program flow to interrupt the handler code. The appropriate mode is then set by the software. The 603R provides a separate interrupt and interrupt vector for power management, the System Management Interrupt (SMI). The 603R also contains a decrement timer which allows it to enter the nap or doze mode for a predetermined amount of time and then return to full power operation through the Decrementer Interrupt (DI). Note that the 603R cannot switch from power-on management mode to another without first returning to full on mode. The nap and sleep modes disable bus snooping; therefore, a hardware handshake is provided to ensure coherency before the 603R enters these power management modes.

Table 9-1 summarizes the four power states.

 Table 9-1.
 Power PC 603R Microprocessor Programmable Power Modes

PM Mode	Functioning Units	Activation Method	Full-power Wake-up Method
Full Power	All units active	_	-
Full Power (with DPM)	Requested logic by demand	By instruction dispatch	_
Doze	- Bus snooping - Data cache as needed - Decrementer timer	Controlled by SW	External asynchronous exceptions ⁽¹⁾ Decrementer interrupt Reset
Nap	Decrementer timer	Controlled by hardware and software	External asynchronous exceptions Decrementer interrupt Reset
Sleep	None	Controlled by hardware and software	External asynchronous exceptions Reset

Note: 1. Exceptions are referred to as interrupts in the architecture specification.

9.3 Power Management Modes

The following describes the characteristics of the 603R's power management modes, the requirements for entering and exiting the various modes, and the system capabilities provided by the 603R while the power management modes are active.

Full Power Mode with DPM Disabled

Full power mode with DPM disabled; power mode is selected when the DPM enable bit (bit 11) in HID0 is cleared

- Default state following power-up and HRESET
- All functional units are operating at full processor speed at all times

Full Power Mode with DPM Enabled

Full power mode with DPM enabled (HID0[11] = 1); provides on-chip power management without affecting the functionality or performance of the 603R

• Required functional units are operating at full processor speed

- · Functional units are clocked only when needed
- No software or hardware intervention required after mode is set
- · Software/hardware and performance are transparent

Doze Mode

The doze mode disables most functional units but maintains cache coherency by enabling the bus interface unit and snooping. A snoop hit will cause the 603R to enable the data cache, copy the data back to the memory, disable the cache, and fully return to the doze state. In this mode:

- Most functional units are disabled
- Bus snooping and time base/decrementer are still enabled
- Dose mode sequence:
 - Set doze bit (HID0[8) = 1)
 - 603R enters doze mode after several processor clocks
- There are several methods for returning to full-power mode
 - Assert INT, SMI, MCP or decrementer interrupts
 - Assert hard reset or soft reset
- The Transition to full-power state takes no more than a few processor cycles
- Phase Locked Loop (PLL) running and locked to SYSCLK

Nap Mode

The nap mode disables the 603R but still maintains the phase locked loop (PLL) and the time base/decrementer. The time base can be used to restore the 603R to full-on state after a programmed amount of time. Because bus snooping is disabled for nap and sleep modes, a hardware handshake using the quiesce request (\overline{QREQ}) and quiesce acknowledge (\overline{QACK}) signals is required to maintain data coherency. The 603R will assert the \overline{QREQ} signal to indicate that it is ready to disable bus snooping. When the system has ensured that snooping is no longer necessary, it will assert \overline{QACK} and the 603R will enter the sleep or nap mode. In this mode:

- The time base/decrementer is still enabled
- · Most functional units are disabled (including bus snooping)
- All non-essential input receivers are disabled
- Nap mode sequence:
 - Set nap bit (HID0[9] = 1)
 - 603R asserts quiesce request (QREQ) signal
 - System asserts quiesce acknowledge (QACK) signal
 - 603R enters sleep mode after several processor clocks
- There are several methods for returning to full-power mode:
 - Assert INT, SPI, MCP or decrementer interrupts
 - Assert hard reset or soft reset
- Transition to full-power takes no more than a few processor cycles
- The PLL is running and locked to SYSCLK

Sleep Mode

Sleep mode consumes the least amount of power of the four modes since all functional units are disabled. To conserve the maximum amount of power, the PLL may be disabled and the SYSCLK may be removed. Due to the fully static design of the 603R, the internal processor state is preserved when no internal clock is present. Because the time base and decrementer are disabled while the 603R is in sleep mode, the 603R's time base contents will have to be updated from an external time base following sleep mode if accurate time-of-day maintenance is required. Before the 603R enters the sleep mode, the 603R will assert the QREQ signal to indicate that it is ready to disable bus snooping. When the system has ensured that snooping is no longer necessary, it will assert QACK and the 603R will enter the sleep mode.

In this mode:

- All functional units are disabled (including bus snooping and time base)
- All non-essential input receivers are disabled
 - Internal clock regenerators are disabled
 - The PLL is still running (see below)
- Sleep mode sequence
 - Set sleep bit (HID0[10] = 1)
 - 603R asserts quiesce request (QREQ)
 - System asserts quiesce acknowledge (QACK)
 - 603R enters sleep mode after several processor clocks
- There are several methods for returning to full-power mode
 - Assert INT, SMI, or MCP interrupts
 - Assert hard reset or soft reset
- The PLL may be disabled and SYSCLK may be removed while in sleep mode
- Return to full-power mode after PLL and SYSCLK disabled in sleep mode
 - Enable SYSCLK
 - Reconfigure PLL into the desired processor clock mode
 - System logic waits for PLL startup and relock time (100 μ s)
 - System logic asserts one of the sleep recovery signals (for example, INT or SMI)

9.4 Power Management Software Considerations

Since the 603R is a dual issue processor with out-of-order execution capabilities, care must be taken with the way the power management mode is entered. Furthermore, nap and sleep modes require all outstanding bus operations to be completed before the power management mode is entered. Normally, during the system configuration time, one of the power management modes would be selected by setting the appropriate HID0 mode bit. Later on, the power management mode is invoked by setting the MSR[POW] bit. To provide a clean transition into and out of the power management mode, the **stmsr**[POW] should be preceded by a **sync** instruction and followed by an **isync** instruction.

9.5 Power Dissipation

	Cerquad 24	Cerquad 240 Package CBGA 255, H		A 255, HiTCI	HITCE CBGA 255 and CI-CGA 255			
CPU Clock Frequency	166 MHz	200 MHz	166 MHz	200 MHz	233 MHz	266 MHz	300 MHz	Units
Full-on Mode (DPM Enabled)								
Typical	2.1	2.5	2.1	2.5	3	3.5	4	W
Max	3.2	4	3.2	4	4.6	5.3	6	W
Doze Mode				1				
Typical	1.5	1.7	1.5	1.7	1.8	2	2.1	W
Nap Mode								
Typical	100	120	100	120	140	160	180	mW
Sleep Mode	+			<u>.</u>			<u>.</u>	
Typical	96	110	96	110	123	135	150	mW
Sleep Mode-PLL Disabled				1				
Typical	60	60	60	60	60	60	60	mW
Sleep Mode-PLL and SYSCL	K Disabled							
Typical	25	25	25	25	25	25	25	mW
Maximum	60	60	60	60	60	80	100	mW

Table 9-2. Power Dissipation⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ with $V_{DD}/AV_{DD} = 2.5 \pm 5\%V$, $OV_{DD} = 3.3 \pm 5\%V$, GND = 0V, $0^{\circ}C \le T_{C} \le 125^{\circ}C$

Notes: 1. These values apply for all valid PLL_CFG[0-3] settings and do not include output driver power (OV_{DD}) or analog supply power (AV_{DD}). OV_{DD} power is system dependent but is typically $\leq 10\%$ of V_{DD} . Worst case $AV_{DD} = 15$ mW.

power (AV_{DD}). OV_{DD} power is system dependent but is typically ≤ 10% of V_{DD}. Worst case AV_{DD} = 15 mW.
Typical power is an average value measured at V_{DD} = AV_{DD} = 2.5V, OV_{DD} = 3.3V, in a system executing typical applications and benchmark sequences.

3. Maximum power is measured at V_{DD} = 2.625V using a worst-case instruction mix.

4. To calculate the power consumption at low temperature (-55°C), use a factor of 1.25.

9.6 Marking

Each microcircuit is legible and permanently marked with at least the following information:

- Atmel logo
- Manufacturer's part number
- Class B identification if applicable
- Date code of inspection lot
- ESD identifier if available
- Country of manufacture

10. Pin Assignments

10.1 CBGA 255 and CI-CGA 255 Packages

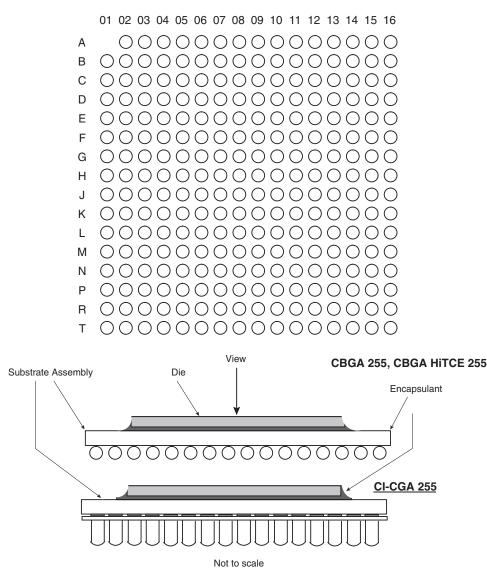

Figure 10-1 (pin matrix) shows the pinout as viewed from the top of the CBGA and CI-CGA packages. The direction of the top surface view is shown by the side profile of the packages.

Figure 10-1. CBGA 255, HiTCE CBGA 255 and CI-CGA 255 Top View

Pin matrix top view

10.1.1 Pinout Listing

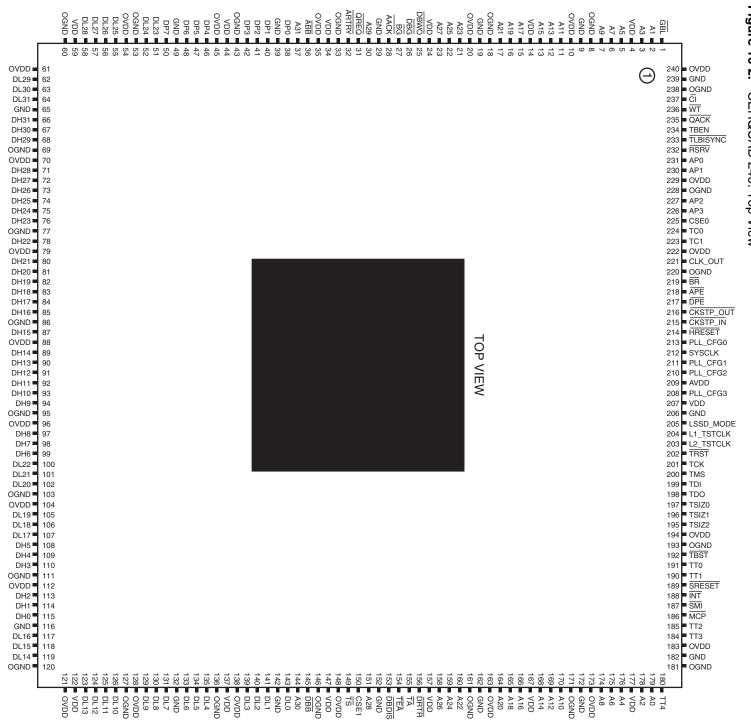
Table 10-1.Power and Ground Pins

	CBGA, HITCE CBGA and CI-CGA Pin Number				
	V _{DD}	GND			
PLL (AV _{DD})	A10				
Internal Logic ⁽¹⁾ (V _{DD})	F06, F08, F09, F11, G07, G10, H06, H08, H09, H11, J06, J08, J09, J11, K07, K10, L06, L08, L09, L11	C05, C12, E03, E06, E08, E09, E11, E14, F05, F07, F10, F12, G06, G08, G09, G11, H05, H07, H10,			
I/O Drivers ⁽¹⁾ (OV _{DD})	C07, E05, E07, E10, E12, G03, G05, G12, G14, K03, K05, K12, K14, M05, M07, M10, M12, P07, P10	H12, J05, J07, J10, J12, K06, K08, K09, K11, L05, L07, L10, L12, M03, M06, M08, M09, M11, M14, P05, P12			

Notes: 1. OV_{DD} inputs apply power to the I/O drivers and V_{DD} inputs supply power to the processor core.

Table 10-2. Signal Pinout Listing

Signal Name	CBGA, HITCE CBGA and CI-CGA Pin Number	Active	I/O
A[0-31]	C16, E04, D13, F02, D14, G01, D15, E02, D16, D04, E13, G02, E15, H01, E16, H02, F13, J01, F14, J02, F15, H03, F16, F04, G13, K01, G15, K02, H16, M01, J15, P01	High	I/O
AACK	L02	Low	Input
ABB	K04	Low	I/O
AP[0-3]	C01, B04, B03, B02	High	I/O
APE	A04	Low	Output
ARTRY	J04	Low	I/O
BG	L01	Low	Input
BR	B06	Low	Output
CI	E01	Low	Output
CKSTP_IN	D08	Low	Input
CKSTP_OUT	A06	Low	Output
CLK_OUT	D07	-	Output
CSE[0-1]	B01, B05	High	Output
DBB	J14	Low	I/O
DBG	N01	Low	Input
DBDIS	H15	Low	Input
DBWO	G04	Low	Input
DH[0-31]	P14, T16, R15, T15, R13, R12, P11, N11, R11, T12, T11, R10, P09, N09, T10, R09, T09, P08, N08, R08, T08, N07, R07, T07, P06, N06, R06, T06, R05, N05, T05, T04	High	I/O
DL[0-31]	K13, K15, K16, L16, L15, L13, L14, M16, M15, M13, N16, N15, N13, N14, P16, P15, R16, R14, T14, N10, P13, N12, T13, P03, N03, N04, R03, T01, T02, P04, T03, R04	High	I/O
DP[0-7]	M02, L03, N02, L04, R01, P02, M04, R02	High	I/O
DPE	A05	Low	Output
DRTRY	G16	Low	Input


Table 10-2. Signal Pinout Listing (Continued)

Signal Name	CBGA, HITCE CBGA and CI-CGA Pin Number	Active	I/O
GBL	F01	Low	I/O
HRESET	A07	Low	Input
INT	B15	Low	Input
L1_TSTCLK ⁽¹⁾	D11	-	Input
L2_TSTCLK ⁽¹⁾	D12	-	Input
LSSD_MODE ⁽¹⁾	B10	Low	Input
MCP	C13	Low	Input
PLL_CFG[0-3]	A08, B09, A09, D09	High	Input
QACK	D03	Low	Input
QREQ	J03	Low	Output
RSRV	D01	Low	Output
SMI	A16	Low	Input
SRESET	B14	Low	Input
SYSCLK	C09	-	Input
TA	H14	Low	Input
TBEN	C02	High	Input
TBST	A14	Low	I/O
TC[0-1]	A02, A03	High	Output
ТСК	C11	-	Input
TDI	A11	High	Input
TDO	A12	High	Output
TEA	H13	Low	Input
TLBISYNC	C04	Low	Input
TMS	B11	High	Input
TRST	C10	Low	Input
TS	J13	Low	I/O
TSIZ[0-2]	A13, D10, B12	High	I/O
TT[0-4]	B13, A15, B16, C14, C15	High	I/O
WT	D02	Low	Output
NC	B07, B08, C03, C06, C08, D05, D06, F03, H04, J16	Low	Input
VOLTDETGND ⁽²⁾	F03	Low	Output

 Notes: 1. These are test signals for factory use only and must be pulled up to OV_{DD} for normal machine operation.
 2. NC (not connected) in the 603e BGA package; internally tied to GND in the 603R BGA package to indicate to the power supply that a low-voltage processor is present.

10.2 CERQUAD 240 Package

Figure 10-2. CERQUAD 240: Top View

10.2.1 Pinout Listing

Table 10-3.Power and Ground Pins

	CERQUAD Pin Number				
	VCC	GND			
PLL (AV _{DD})	209				
Internal Logic	4, 14, 24, 34, 44, 59, 122, 137, 147, 157, 167, 177, 207	9, 19,29, 39, 49, 65, 116, 132, 142, 152, 162, 172, 182, 206, 239			
Output Drivers	10, 20, 35, 45, 54, 61, 70, 79, 88, 96, 104, 112, 121, 128, 138, 148, 163, 173, 183, 194, 222, 229, 240	8, 18, 33, 43, 53, 60, 69, 77, 86, 95, 103, 111, 120, 127, 136, 146, 161, 171, 181, 193, 220, 228, 238			

Table 10-4. Signal Pinout Listing

Signal Name	CERQUAD Pin Number
A[0-31]	179, 2, 178, 3, 176, 5, 175, 6, 174, 7, 170, 11, 169, 12, 168, 13, 166, 15, 165, 16, 164, 17, 160, 21, 159, 22, 158, 23, 151, 30, 144, 37
AACK	28
ABB	36
AP[0-3]	231,230,227,226
APE	218
ARTRY	32
BG	27
BR	219
CI	237
CKSTP_IN	215
CKSTP_OUT	216
CLK_OUT	221
CSE[0-1]	225,150
DBB	145
DBG	26
DBDIS	153
DBWO	25
DH[0-31]	115, 114, 113, 110, 109, 108, 99, 98, 97, 94, 93, 92, 91, 90, 89, 87, 85, 84, 83, 82, 81, 80, 78, 76, 75, 74, 73, 72, 71, 68, 67, 66
DL[0-31]	143, 141, 140, 139, 135, 134, 133, 131, 130, 129, 126, 125, 124, 123, 119, 118, 117, 107, 106, 105, 102, 101, 100, 51, 52, 55, 56, 57, 58, 62, 63, 64
DP[0-7]	38, 40, 41, 42, 46, 47, 48, 50
DPE	217
DRTRY	156
GBL	1
HRESET	214

Table 10-4. Signal Pinout Listing (Continued)

Signal Name	CERQUAD Pin Number
ĪNT	188
L1_TSTCLK ⁽¹⁾	204
L2_TSTCLK ⁽¹⁾	203
LSSD_MODE ⁽¹⁾	205
MCP	186
PLL_CFG[0-3]	213, 211, 210, 208
QACK	235
QREQ	31
RSRV	232
SMI	187
SRESET	189
SYSCLK	212
TA	155
TBEN	234
TBST	192
TC[0-1]	224, 223
ТСК	201
TDI	199
TDO	198
TEA	154
TLBISYNC	233
TMS	200
TRST	202
TS	149
TSIZ[0-2]	197, 196, 195
TT[0-4]	191, 190, 185, 184, 180
WT	236
NC	

Notes: 1. These are test signals for factory use only and must be pulled up to V_{DD} for normal machine operation.
 OV_{DD} inputs supply power to the I/O drivers and V_{DD} inputs supply power to the processor core. Future members of the 603 family may use different OV_{DD} and V_{DD} input levels.

Signal Name	Abbreviation	Signal Function	Signal Type
Address Bus	A[0-31]	If output, physical address of data to be transferred If input, represents the physical address of a snoop operation	I/O
Data Bus	DH[0-31]	Represents the state of data, during a data write operation if output, or during a data read operation if input	I/O
Data Bus	DL[0-31]	Represents the state of data, during a data write operation if output, or during a data read operation if input	I/O

Table 10-5. Address and Data Bus Signal Index for Cerquad, CBGA 255 and CI-CGA 255 Packages

Table 10-6. Signal Index for Cerquad, CBGA 255, HiTCE CBGA 255 and CI-CGA 255 Packages

Signal Name	Abbreviation	Signal Function	Signal Type
Address Acknowledge	AACK	The address phase of a transaction is complete	Input
Address Bus Busy	ABB	If output, the 603R is the address bus master If input, the address bus is in use	I/O
Address Bus Parity	AP[0-3]	If output, represents odd parity for each of 4 bytes of the physical address for a transaction If input, represents odd parity for each of 4 bytes of the physical address for snooping operations	I/O
Address Parity Error	APE	Incorrect address bus parity detected on a snoop	Output
Address Retry	ARTRY	If output, detects a condition in which a snooped address tenure must be retried If input, must retry the preceding address tenure	I/O
Bus Grant	BG	May, with the proper qualification, assume mastership of the address bus	Input
Bus Request	BR	Request mastership of the address bus	Output
Cache Inhibit	CI	A single-beat transfer will not be cached	Output
Checkstop Input	CKSTP_IN	Must terminate operation by internally gating off all clocks, and release all outputs	Input
Checkstop Output	CKSTP_OUT	Has detected a checkstop condition and has ceased operation	Output
Cache Set Entry	CSE[0-1]	Cache replacement set element for the current transaction reloading into or writing out of the cache	Output
Data Bus Busy	DBB	If output, the 603R is the data bus master If input, another device is bus master	I/O
Data Bus Disable	DBDIS	(For a write transaction) must release data bus and the data bus parity to high impedance during the following cycle	Input
Data Bus Grant	DBG	May, with the proper qualification, assume mastership of the data bus	Input
Data Bus Write Only	DBW0	May run the data bus tenure	Input
Data Bus Parity	DP[0-7]	If output, odd parity for each of 8 bytes of data write transactions If input, odd parity for each byte of read data	I/O
Data Parity Error	DPE	Incorrect data bus parity	Output
Data Retry	DRTRY	Must invalidate the data from the previous read operation	Input

Signal Name	Abbreviation	Signal Function	Signal Type
Global	GBL	If output, a transaction is global If input, a transaction must be snooped by the 603R	I/O
Hard Reset	HRESET	Initiates a complete hard reset operation	Input
Interrupt	ĪNT	Initiates an interrupt if bit EE of MSR register is set	Input
	LSSD_MODE	LSSD test control signal for factory use only	Input
Factory Test	L1_TSTCLK	LSSD test control signal for factory use only	Input
	L2_TSTCLK	LSSD test control signal for factory use only	Input
Machine Check Interrupt	MCP	Initiates a machine check interrupt operation if the bit ME of MSR register and bit EMCP of HID0 register are set	Input
PLL Configuration	PLL_CFG[0-3]	Configures the operation of the PLL and the internal processor clock frequency	Input
Power supply indicator	VOLTDETGND	Available only on BGA package Indicates to the power supply that a low-voltage processor is present.	Output
Quiescent Acknowledge	QACK	All bus activity has terminated and the 603R may enter a quiescent (or low power) state	Input
Quiescent Request	QREQ	Is requesting all bus activity normally to enter a quiescent (low power) state	Output
Reservation	RSRV	Represents the state of the reservation coherency bit in the reservation address register	Output
System Management Interrupt	SMI	Initiates a system management interrupt operation if the bit EE of MSR register is set	Input
Soft Reset	SRESET	Initiates processing for a reset exception	Input
System Clock	SYSCLK	Represents the primary clock input for the 603R, and the bus clock frequency for 603R bus operation	Input
Test Clock	CLK_OUT	Provides PLL clock output for PLL testing and monitoring	Output
Transfer Acknowledge	TA	A single-beat data transfer completed successfully or a data beat in a burst transfer completed successfully	Input
Timebase Enable	TBEN	The timebase should continue clocking	Input
Transfer Burst	TBST	If output, a burst transfer is in progress If input, when snooping for single-beat reads	I/O
Transfer Code	TC[0-1]	Special encoding for the transfer in progress	Output
Test Clock	тск	Clock signal for the IEEE P1149.1 test access port (TAP)	Input
Test Data Input	TDI	Serial data input for the TAP	Input
Test Data Output	TDO	Serial data output for the TAP	Output
Transfer Error Acknowledge	TEA	A bus error occurred	Input
TLBI Sync	TLBISYNC	Instruction execution should stop after execution of a tlbsync instruction	Input
Test Mode Select	TMS	Selects the principal operations of the test-support circuitry	Input
Test Reset	TRST	Provides an asynchronous reset of the TAP controller	Input
Transfer Size	TSIZ[0-2]	For memory accesses, these signals along with $\overline{\text{TBST}}$ indicate the data transfer size for the current bus operation	I/O

Signal Index for Cerquad, CBGA 255, HiTCE CBGA 255 and CI-CGA 255 Packages (Continued) Table 10-6.

Signal Name	Abbreviation	Signal Function	Signal Type
Transfer Start	TS	If output, begun a memory bus transaction and the address bus and transfer attribute signals are valid If input, another master has begun a bus transaction and the address bus and transfer attribute signals are valid for snooping (see GBL)	I/O
Transfer Type	TT[0-4]	Type of transfer in progress	I/O
Write-through	WT	A single-beat transaction is write-through	Output

Table 10-6. Sign	nal Index for Cerquad,	CBGA 255, ł	HiTCE CBGA 255 and	d CI-CGA 255 Package	s (Continued)
------------------	------------------------	-------------	--------------------	----------------------	---------------

11. Electrical Characteristics

11.1 General Requirements

All static and dynamic electrical characteristics specified for inspection purposes and the relevant measurement conditions are given below:

- Table 11-1: Static electrical characteristics for the electrical variants
- Table 11-2: Dynamic electrical characteristics for the 603R

The processor core frequency is determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG0 to PLL_CFG3 signals. All timings are respectively specified to the rising edge of SYSCLK.

These specifications are for 166 MHz to 300 MHz processor core frequencies for CBGA 255, HiTCE CBGA 255 and CI-CGA 255 packages and 166 MHz to 200 MHz processor core frequencies for the Cerquad 240 package.

11.2 Static Characteristics

Table 11-1.	Electrical Characteristics with V _{DD}	$_{0} = AV_{DD} = 2.5V \pm 5\%; OV_{DD} = 3.3 \pm 5\%V, GND = 0V, -55^{\circ}C \le T_{C}$	≤ 125°C
-------------	---	---	---------

Characteristics		Symbol	Min	Max	Unit
Input High Voltage (all inputs except SYSCLK)		V _{IH}	2	5.5	V
Input Low Voltage (all inputs except SYSCLK)		V _{IL}	GND	0.8	V
SYSCLK Input High Voltage		CVIH	2.4	5.5	V
SYSCLK Input Low Voltage		CVIL	GND	0.4	V
	V _{IN} = 3.465V ⁽¹⁾⁽³⁾	I _{IN}	-	30	μA
Input Leakage Current	$V_{IN} = 5.5 V^{(1)(3)}$	I _{IN}	-	300	μA
Hi-Z (off-state)	V _{IN} = 3.465V ⁽¹⁾⁽³⁾	I _{TSI}	-	30	μA
Leakage Current	$V_{IN} = 5.5 V^{(1)(3)}$	I _{TSI}	-	300	μA
Output High Voltage	I _{OH} = -7 mA	V _{OH}	2.4	-	V
Output Low Voltage	Putput Low Voltage I _{OL} = +7 mA		-	0.4	V
Capacitance, $V_{IN} = 0V$, f = 1 MHz ⁽²⁾ (excludes TS, ABB, DBB, and ARTRY)			-	10	pF
Capacitance, $V_{IN} = 0V$, f = 1 MHz ⁽²⁾ (for \overline{TS} , \overline{ABB} , \overline{IS}	DBB, and ARTRY)	C _{IN}	-	15	pF

Notes: 1. Excludes test signals (LSSD_MODE, L1_TSTCLK, L2_TSTCLK, and JTAG signals).

2. Capacitance is periodically sampled rather than 100% tested.

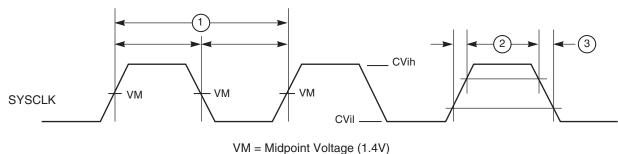
3. Leakage currents are measured for nominal OV_{DD} and V_{DD} or both OV_{DD} and V_{DD} . Same variation (for example, both V_{DD} and OV_{DD} vary by either +5% or -5%)

11.3 Dynamic Characteristics

11.3.1 Clock AC Specifications

Table 11-2 provides the clock AC timing specifications as defined in Figure 11-1.

Table 11-2.Clock AC Timing Specifications⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾ with $V_{DD} = AV_{DD} = 2.5V \pm 5\%$; $OV_{DD} = 3.3 \pm 5\%V$, GND = 0V,
 $-55^{\circ}C \le T_{C} \le 125^{\circ}C$


		CBGA 255, HITCE CBGA 255, CI-CGA 255 and CERQUAD			CBGA 255, HiTCE CBGA 255 and CI-CGA 255								
Figure		166 MHz		200 MHz		233 MHz		266	MHz	300 MHz			
Number	Characteristics	Min	Max	Min	Мах	Min	Мах	Min	Max	Min	Max	Unit	Note
	Processor Frequency	150	166	150	200	180	233	180	266	180	300	MHz	(5)
	VCO Frequency	300	332	300	400	360	466	360	532	360	600	MHz	(5)
	SYSCLK (bus) Frequency	25	66.7	33.3	66.7	33.3	75	33.3	75	33.3	75	MHz	(5)
1	SYSCLK Cycle Time	15	30	13.3	30	13.3	30	13.3	30	13.3	30	ns	
2,3	SYSCLK Rise and Fall Time	_	2	_	2	_	2	_	2	_	2	ns	(1)
4	SYSCLK Duty Cycle (1.4V measured)	40	60	40	60	40	60	40	60	40	60	%	(3)
	SYSCLK Jitter	_	±150	_	±150	_	±150	-	±150	_	±150	ps	(2)
	603R Internal PLL Relock Time	_	100	_	100	_	100	_	100	_	100	μs	(3)(4)

Notes: 1. Rise and fall times for the SYSCLK input are measured from 0.4V to 2.4V.

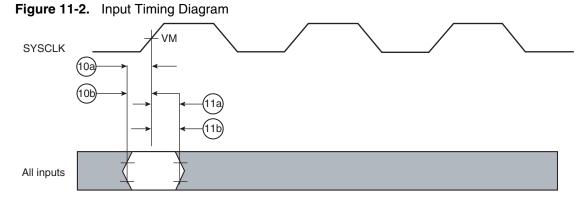
2. Cycle-to-cycle jitter is guaranteed by design.

- 3. Timing is guaranteed by design and characterization and is not tested.
- 4. The PLL relock time is the maximum amount of time required for PLL lock after a stable V_{DD}, OV_{DD}, AV_{DD} and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted for a minimum of 255 bus clocks after the PLL relock time (100 µs) during the power-on reset sequence.
- Caution: The SYSCLK frequency and PLL_CFG[0-3] settings must be chosen so that the resulting SYSCLK (bus) frequency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0-3] signal description for valid PLL_CFG[0-3] settings.

11.3.2 Input AC Specifications

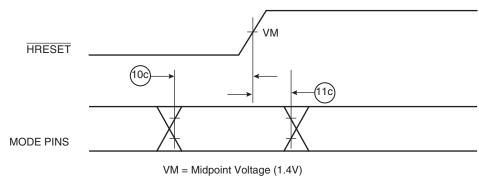
Table 11-3 provides the input AC timing specifications for the 603R as defined in Figure 11-2 and Figure 11-3.

Table 11-3.Input AC Timing Specifications⁽¹⁾ with $V_{DD} = AV_{DD} = 2.5V \pm 5\%$; $OV_{DD} = 3.3 \pm 5\%V$, GND = 0V,
 $-55^{\circ}C \le T_{C} \le 125^{\circ}C$


		CBGA 25 255 and	55, HiTCE 5, CI-CGA Cerquad ckages		255, HiT(and CI-C				
Figure		166, 20	00 MHz	233, 20	66 MHz	300	MHz		
Number	Characteristics	Min	Max	Min	Max	Min	Max	Unit	Note
10a	Address/data/transfer attribute inputs valid to SYSCLK (input setup)	2.5	_	2.5	_	2.5	-	ns	(2)
10b	All other inputs valid to SYSCLK (input setup)	4	_	3.5	_	3.5	_	ns	(3)
10c	Mode select inputs valid to HRESET (input setup) (for DRTRY, QACK and TLBISYNC)	8	_	8	_	8	_	t _{syscl} k	(4)(5)(6)(7)
11a	SYSCLK to address/data/transfer attribute inputs invalid (input hold)	1	_	1	_	1	_	ns	(2)
11b	SYSCLK to all other inputs invalid (input hold)	1	-	1	_	1	-	ns	(3)
11c	HRESET to mode select inputs invalid (input hold) (for DRTRY, QACK, and TLBISYNC)	0	_	0	_	0	_	ns	(4)(6) (7)

Notes: 1. All input specifications are measured from the TTL level (0.8 or 2V) of the signal in question to the 1.4V of the rising edge of the input SYSCLK. Both input and output timings are measured at the pin. See Figure 11-3.

 Address/data/transfer attribute input signals are composed of the following: A[0-31], AP[0-3], TT[0-4], TC[0-1], TBST, TSIZ[0-2], GBL, DH[0-31], DL[0-31], DP[9-7].


3. All other input signals are composed of the following: TS, ABB, DBB, ARTRY, BG, AACK, DBG, DBWO, TA, DRTRY, TEA, DBDIS, HRESET, SRESET, INT, SMI, MCP, TBEN, QACK, TLBISYNC.

- 4. The setup and hold time is with respect to the rising edge of HRESET. See Figure 11-3.
- 5. t_{syscik} is the period of the external clock (SYSCLK) in nanoseconds (ns). The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in nanoseconds) of the parameter in question.
- 6. These values are guaranteed by design, and are not tested.
- 7. This specification is for configuration mode only. Also note that HRESET must be held asserted for a minimum of 255 bus clocks after the PLL relock time (100 μs) during the power-on reset sequence.

VM = Midpoint Voltage (1.4V)

11.3.3 Output AC Specifications

Table 11-4 provides the output AC timing specifications for the 603R (shown in Figure 11-4).

Table 11-4.Output AC Timing Specifications⁽¹⁾⁽²⁾ with $V_{DD} = AV_{DD} = 2.5V \pm 5\%$; $OV_{DD} = 3.3 \pm 5\%V$, GND = 0V, $C_L = 50$ pF, $55^{\circ}C \le T_C \le 125^{\circ}C$

		CBGA 25 CBGA 255 255 and 240 Pac	5, CI-CGA Cerquad	CBGA 2	55, HiTC CI-CC				
		166, 20	0 MHz	233, 266 MHz		300 M	Hz		
Number	Characteristics	Min	Max	Min	Max	Min	Max	Unit	Note
12	SYSCLK to output driven (output enable time)	1	_	1	-	1	_	ns	
13a	SYSCLK to output valid (5.5V to 0.8V – TS, ABB, ARTRY, DBB)	_	9	_	9	_	9	ns	(4)
13b	SYSCLK to output valid (\overline{TS} , \overline{ABB} , \overline{ARTRY} , \overline{DBB})	_	8	_	8	_	8	ns	(6)
14a	SYSCLK to output valid (5.5V to 0.8V – all except TS, ABB, ARTRY, DBB)	_	11	_	11	_	11	ns	(4)
14b	SYSCLK to output valid (all except \overline{TS} , ABB, ARTRY, DBB)	_	9	_	9	_	9	ns	(6)
15	SYSCLK to output invalid (output hold)	1	-	1	_	1	_	ns	(3)
16	SYSCLK to output high impedance (all except ARTRY, ABB, DBB)	_	8.5	_	8	_	8	ns	
17	SYSCLK to ABB, DBB, high impedance after precharge	_	1	_	1	_	1	t _{SYSCLK}	(5)(7)
18	SYSCLK to ARTRY high impedance before precharge	_	8	_	7.5	_	7.5	ns	
19	SYSCLK to ARTRY precharge enable	0.2 × t _{SYSCLK} + 1	_	0.2 × t _{SYSCLK} + 1	_	0.2 × t _{sysclk}	_	ns	(3)(5) (8)
20	Maximum delay to ARTRY precharge	-	1	-	1	-	1	t _{SYSCLK}	(5)(8)
21	SYSCLK to ARTRY high impedance after precharge	_	2	_	2	_	2	t _{SYSCLK}	(6)(8)

