imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TSX631, TSX632, TSX634, TSX631A, TSX632A, TSX634A

Micropower (45 µA, 200 kHz) rail-to-rail 16 V CMOS operational amplifiers

Single SOT23-5 Dual DEN8 2x2 DEN8 2x2 Quad Quad TSSOP14

Features

- Low power consumption: 60 μA max at 16 V
- Supply voltage: 3.3 V to 16 V
- Rail-to-rail input and output
- Gain bandwidth product: 200 kHz typ
- Low offset voltage:
 - 500 µV max for "A" version
 - 1 mV max for standard version
- Low input bias current: 1 pA typ
- Automotive qualification

Benefits

- Power savings in power-conscious applications
- Easy interfacing with high impedance sensors

Datasheet - production data

Related products

 See TSX56x or TSX92x series for higher gain bandwidth products (900 kHz or 10 MHz)

Applications

- Industrial signal conditioning
- Automotive signal conditioning
- Active filtering
- Medical instrumentation
- High impedance sensors

Description

The TSX63x and TSX63xA series of operational amplifiers offer low voltage operation and rail-torail input and output. TSX631 is the single version, TSX632 the dual version and TSX634 the quad version, with pinouts compatible with industry standards.

The TSX63x and TSX63xA series offer a 200 kHz gain bandwidth product while consuming 60 μA maximum at 16 V.

The devices are housed in the tiniest industrial packages.

These features make the TSX63x and TSX63xA family ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease the use in harsh automotive applications.

Table 1. Device summary

Op-amp version	Standard V _{io}	Enhanced V _{io}
Single	TSX631	TSX631A
Dual	TSX632	TSX632A
Quad	TSX634	TSX634A

March 2013

DocID024293 Rev 1

This is information on a product in full production.

Contents

1	Pack	age pin connections
2	Abse	olute maximum ratings and operating conditions
3	Elec	trical characteristics
4	Арр	lication information
	4.1	Operating voltages 18
	4.2	Rail-to-rail input
	4.3	Input offset voltage drift over temperature
	4.4	Long term input offset voltage drift 19
	4.5	High values of input differential voltage
	4.6	PCB layouts
	4.7	Macromodel
5	Pack	cage information
	5.1	SOT23-5 package information
	5.2	DFN8 2x2 package information 24
	5.3	MiniSO-8 package information
	5.4	QFN16 3x3 package information
	5.5	TSSOP14 package information 28
6	Orde	ering information
7	Revi	sion history

T

1 Package pin connections

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	18	
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V
V _{in}	Input voltage ⁽³⁾	V_{CC-} - 0.2 to V_{CC+} + 0.2	
l _{in}	Input current ⁽⁴⁾	10	mA
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾ SOT23-5 DFN8 2x2 MiniSO-8 QFN16 3x3 TSSOP14	250 120 190 80 100	°C/W
R _{thjc}	Thermal resistance junction to case DFN8 2x2 QFN16 3x3	33 30	
Тj	Maximum junction temperature	160	°C
	HBM: human body model ⁽⁷⁾	4	kV
ESD	MM: machine model ⁽⁸⁾	200	V
	CDM: charged device model ⁽⁹⁾	1.3	kV
	Latch-up immunity	200	mA

Table 2.	Absolute	maximum	ratings	(AMR)
	Absolute	maximum	raungs	

1. All voltage values, except the differential voltage are with respect to network ground terminal.

 The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. See Section 4.5 for precautions of using the TSX631 with high differential input voltage.

- 3. V_{CC} - V_{in} must not exceed 18 V, V_{in} must not exceed 18 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3.3 to 16	V
V _{icm}	Common mode input voltage range	$V_{CC-} - 0.1$ to $V_{CC+} + 0.1$	v
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 4. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 ° C, and R_L= 10 k Ω connected to V_{CC}/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance					
		TSX63xA, T = 25 °C			700	
N	Offectualtage	TSX63xA, -40°C < T < 125 °C			1500	μν
v _{io}	Oliset voltage	TSX63x, T = 25 °C			1.6	
		TSX63x, -40°C < T < 125 °C			2.4	m)/
V	Offset voltage, high common	T = 25 °C			4	IIIV
vio	mode ($V_{icm}=V_{CC}$, $R_L > 1 M\Omega$)	-40°C < T < 125 °C			5	
$\Delta V_{io} / \Delta T$	Input offset voltage drift	-40°C < T < 125 °C ⁽¹⁾		1	8	μV/°C
	Input offect current $(1/2)$	T = 25 °C		1	100 ⁽²⁾	
lio	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	-40°C < T < 125 °C			200 ⁽²⁾	n۸
	Input biog ourrent $(1/2)$	T = 25 °C		1	100 ⁽²⁾	μA
lib	$\frac{1}{2}$	-40°C < T < 125 °C			200 ⁽²⁾	
R _{IN}	Input resistance			1		TΩ
C _{IN}	Input capacitance			5		pF
	Common mode rejection ratio	T = 25 °C	65 79			
CMR1	$MR1 \begin{cases} CMR = 20 \log (\Delta V_{icm} / \Delta V_{io}) \\ (V_{icm} = -0.1 V \text{ to } V_{CC} - 1.65 V, \\ V_{out} = V_{CC} / 2, R_L > 1 M\Omega s) \end{cases}$	-40°C < T < 125 °C	62			
	Common mode rejection ratio	T = 25 °C	59	74		
CMR2	$CMR = 20 \log (\Delta V_{icm}/\Delta V_{io})$ (V _{icm} = -0.1 V to V _{CC} +0.1 V, V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40°C < T < 125 °C	55			dB
	Large signal voltage gain	T = 25 °C	100	110		
A _{vd}	$(V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V),$ R _L > 1 MΩ)	-40°C < T < 125°C	90			
V	High level output voltage	R _L = 10 kΩ, T = 25 °C			70	
⊻он	V_{id} = +1 V, V_{OH} = V_{CC} - V_{out}	R _L = 10 kΩ, -40 °C < T < 125 °C			100	m\/
Va	Low level output voltage	R _L = 10 kΩ, T = 25 °C	70	70	IIIV	
V OL	$V_{id} = -1 V,$	R _L = 10 kΩ, -40°C < T < 125 °C			100	
	$ \dots \dots $	T = 25 °C	4.3	5.3		
I	$V_{sink} (V_{out} = V_{CC})$	-40°C < T < 125 °C	2.5			mA
'out	$(V_{1} = 0)$	T = 25 °C	3.3	4.3		
	source (*out • •)	-40°C < T < 125 °C	2.5			
	Supply current	T = 25 °C		45	60	
I _{CC}	(per operator, $V_{out} = V_{CC}/2$, R _L > 1 MΩ)	-40°C < T < 125 °C			60	μA

Table 4. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 ° C, and R_L= 10 k Ω connected to V_{CC}/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
AC perfo	rmance			L	4	L
GBP	Gain bandwidth product		160	200		k∏-
Fu	Unity gain frequency	R = 100 kO C = 100 pE		160		KI IZ
$\Phi_{\rm m}$	Phase margin	κ _L = 100 κ ₂₂ σ _L = 100 μ ⁻		55		degrees
G _m	Gain margin			9		dB
SR	Slew rate	$R_L = 100 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to } V_{CC} - 0.5 \text{ V}$		0.12		V/µs
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		5		μV_{pp}
en	Equivalent input noise voltage	f = 1 kHz		60		<u>_nV</u>
-11		f = 10 kHz				√Hz
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1 \text{ kHz}, R_L = 100 \text{ k}\Omega$ $V_{icm} = 0.9\text{V}, BW = 22 \text{ kHz},$ $V_{out} = 1 V_{pp}$		0.005		%

1. See Chapter 4.3: Input offset voltage drift over temperature on page 18

Table 5. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 ° C, and	
R_L = 10 k Ω connected to V _{CC} /2 (unless otherwise specified)	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance					
		TSX63xA, T = 25 °C			700	
	Offerst unlike an	TSX63xA, -40°C < T < 125 °C			1500	μν
v _{io}	Onset voltage	TSX63x, T = 25 °C			1.6	
		TSX63x, -40°C < T < 125 °C			2.4	m)/
N/	Offset voltage, high common	T = 25 °C			4	mv
v _{io}	mode ($V_{icm}=V_{CC}$, $R_L > 1 M\Omega$)	-40°C < T < 125 °C			5	
$\Delta V_{io} / \Delta T$	Input offset voltage drift	-40°C < T < 125 °C ⁽¹⁾		1	8	μV/°C
ΔV_{io}	Long term input offset voltage drift	$T = 25 °C^{(2)}$		17		$\frac{nV}{\sqrt{month}}$
	Input offset current	T = 25 °C		1	100 ⁽³⁾	
lio	$(V_{out} = V_{CC}/2)$	-40°C < T < 125 °C			200 ⁽³⁾	54
	Input bias surrent $(1/2 - 1/2)$	T = 25 °C		1	100 ⁽³⁾	рА
lib	$\frac{1}{1000} = \frac{1}{1000} = 1$	-40°C < T < 125 °C			200 ⁽³⁾	
R _{IN}	Input resistance			1		TΩ
C _{IN}	Input capacitance			5		pF
	Common mode rejection ratio	T = 25 °C	65	79		
CMR1	$CMR = 20 \log (\Delta V_{icm} / \Delta V_{io})$ (V _{icm} = -0.1 V to V _{CC} -1.65 V, V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40°C < T < 125 °C	62			
	Common mode rejection ratio	T = 25 °C	62	77		
CMR2	$CMR = 20 \log (\Delta V_{icm} / \Delta V_{io})$ (V _{icm} = -0.1 V to V _{CC} +0.1 V, V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40°C < T < 125 °C	58			dB
	Large signal voltage gain	T = 25 °C	100	110		
A _{vd}	(V _{out} = 0.5 V to (V _{CC} - 0.5 V), R _L > 1 MΩ)	-40°C < T < 125 °C	90			
Vou	High level output voltage	R _L = 10 kΩ, T=25 °C			70	
VОН	V_{id} = +1 V, V_{OH} = V_{CC} - V_{out}	R_L = 10 kΩ -40°C < T < 125 °C			100	m\/
Vai	Low level output voltage	R _L = 10 kΩ, T = 25 °C			70	
▼OL	V _{id} = -1 V,	R _L = 10 kΩ -40°C < T < 125 °C			100	
		T = 25 °C	11	14		
I _{out} -		-40°C < T < 125 °C	8			mΔ
	$(V_{1} = 0)$	T = 25 °C	9	12		IIIA
		-40°C < T < 125 °C	7			
	Supply current	T = 25 °C		45	60	
Icc	(per operator, $V_{out} = V_{CC}/2$, R _L > 1 MΩ)	-40°C < T < 125 °C			60	μA

Table 5. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 ° C, and	I
R_L = 10 k Ω connected to V _{CC} /2 (unless otherwise specified)	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
AC perfo	ormance					
GBP	Gain bandwidth product		160	200		문니구
F _u	Unity gain frequency	$P_{\rm c} = 100 k_{\rm O} C_{\rm c} = 100 n_{\rm E}$		160		KI IZ
Φ _m	Phase margin			55		degrees
G _m	Gain margin			9		dB
SR	Slew rate	$R_L = 100 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to } V_{CC} - 0.5 \text{ V}$		0.12		V/µs
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		5		μV _{pp}
	Equivalant input poiso valtago	f = 1 kHz		60		nV
en		f = 10 kHz		00		√Hz
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1 \text{ kHz}, \text{ R}_{L} = 100 \text{ k}\Omega,$ $V_{icm} = 2.5\text{V}, \text{ BW} = 22 \text{ kHz},$ $V_{out} = 1 V_{pp}$		0.005		%

1. See Chapter 4.3: Input offset voltage drift over temperature on page 18

 Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See Chapter 4.4: Long term input offset voltage drift on page 19.

Table 6. Electrical characteristics at V_{CC+} = +10 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 ° C, and
R _L =10 kΩ connected to V _{CC} /2 (unless otherwise specified)

Symbol	Parameter	arameter Conditions		Тур.	Max.	Unit			
DC performance									
N		TSX63xA, T = 25 °C			500				
	Offset voltage	TSX63xA, -40°C < T < 125 °C			1300	μν			
v _{io}		TSX63x, T = 25 °C			1	mV			
		TSX63x, -40°C < T < 125 °C			1.8				
V	Offset voltage, high common mode (V_{icm} = V_{CC} , R_L > 1 MΩ)	T = 25 °C			4				
v _{io}		-40°C < T < 125 °C			5				
$\Delta V_{io} / \Delta T$	Input offset voltage drift	-40°C < T < 125 °C ⁽¹⁾		1	8	μV/°C			
ΔV _{io}	Long term input offset voltage drift	T = 25 °C ⁽²⁾		180		$\frac{nV}{\sqrt{month}}$			
	Input offect current $(1/2)$	T = 25 °C		1	100 ⁽³⁾				
lio	input onset current ($v_{out} = v_{CC}/2$)	-40°C < T < 125 °C			200 ⁽³⁾	54			
	leave this current $(1/2)$	T = 25 °C		1	100 ⁽³⁾	рА			
lib	Input bias current ($v_{out} = v_{CC}/2$)	-40°C < T < 125 °C			200 ⁽³⁾				
R _{IN}	Input resistance			1		TΩ			
C _{IN}	Input capacitance			5		pF			
	Common mode rejection ratio	T = 25 °C	71	84					
CMR1	$CMR = 20 \log (\Delta V_{icm}/\Delta V_{io})$ (V _{icm} = -0.1 V to V _{CC} -1.65 V, V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40°C < T < 125 °C	68						
		T = 25 °C	69	82					
CMR2		-40°C < T < 125 °C	66			dB			
	Large signal voltage gain	T = 25 °C	100	110					
A _{vd}	$(V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V), R_L > 1 M\Omega)$	-40°C < T < 125 °C	90						
Vou	High level output voltage	R _L = 10 kΩ, T = 25 °C			70				
• OH	V_{id} = +1 V, V_{OH} = V_{CC} - V_{out}	R _L = 10 kΩ, -40°C < T < 125 °C			100	m\/			
V _{OL}	Low level output voltage	R _L = 10 kΩ, T = 25 °C			70				
	$V_{id} = -1 V,$	R _L = 10 kΩ, -40°C < T < 125 °C			100				
I _{out}	$V_{\rm ext} = V_{\rm OO}$	T = 25 °C	35	51					
		-40°C < T < 125 °C	25			mA			
	(V = 0 V)	T = 25 °C	30	42		- ma -			
		-40°C < T < 125 °C	20						
	Supply current	T = 25 °C		45	60				
I _{CC}	(per operator, $v_{out} = v_{CC}/2$, R _L > 1 MΩ)	-40°C < T < 125 °C			60	μA			

Table 6. Electrical characteristics at V_{CC+} = +10 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 ° C, and R_L=10 k Ω connected to V_{CC}/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
AC perfo	AC performance								
GBP	Gain bandwidth product		160	200		к П-			
F _u	Unity gain frequency	$\mathbf{R}_{\rm c} = 100 \mathrm{kO} \mathrm{C}_{\rm c} = 100 \mathrm{nE}$		160		KI IZ			
Φ _m	Phase margin	n - 100 ksz c - 100 pr		55		degrees			
G _m	Gain margin			9		dB			
SR	Slew rate	$R_{L} = 100 \text{ k}\Omega, C_{L} = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to } V_{CC} - 0.5 \text{ V}$		0.12		V/µs			
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		5		μV_{pp}			
	Equivalent input poise voltage	f = 1 kHz		60		dΒ V/μs μV _{pp} <u>nV</u> √Hz			
e _n	Equivalent input hoise voitage	f = 10 kHz		00					
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1 \text{ kHz}, \text{ R}_{L} = 100 \text{ k}\Omega$, $V_{icm} = 5 \text{ V}, \text{ BW} = 22 \text{ kHz},$ $V_{out} = 1 \text{ V}_{pp}$		0.004		%			

1. See Chapter 4.3: Input offset voltage drift over temperature on page 18

 Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See *Chapter 4.4: Long term input offset voltage drift on page 19.*

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
DC performance									
	Offset voltage	TSX63xA, T = 25 °C			700				
V _{io}		TSX63xA, -40°C < T < 125 °C			1500	μν			
		T = 25 °C			1.6				
		-40°C < T < 125 °C			2.4				
N	Offset voltage, high common-	T = 25°C			4	mv			
v _{io}	mode ($V_{icm} = V_{CC}$, $R_L > 1 M\Omega$)	-40°C < T < 125 °C			5				
$\Delta V_{io} / \Delta T$	Input offset voltage drift	-40°C < T < 125 °C ⁽¹⁾		1	8	μV/°C			
ΔV_{io}	Long term input offset voltage drift	T = 25 °C ⁽²⁾		3.4		$\frac{\mu V}{\sqrt{month}}$			
	Input offset current	T = 25 °C		1	100 ⁽³⁾				
l _{io}	$(V_{out} = V_{CC}/2)$	-40°C < T < 125 °C			200 ⁽³⁾				
	Input bias current	T = 25 °C		1	100 ⁽³⁾	pА			
lib	$(V_{out} = V_{CC}/2)$	-40°C < T < 125 °C			200 ⁽³⁾				
R _{IN}	Input resistance			1		TΩ			
C _{IN}	Input capacitance			5		pF			
	Common mode rejection ratio	T = 25 °C	71	85					
CMR1	$CMR = 20 \log (\Delta V_{icm} / \Delta V_{io})$ (V _{icm} = -0.1 V to V _{CC} -1.65 V, V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40°C < T < 125 °C	68						
	Common mode rejection ratio	T = 25 °C	69	83					
CMR2 CMR = 2 (V _{icm} = V _{out} = V ₀	$CMR = 20 \log (\Delta V_{icm} / \Delta V_{io})$ (V _{icm} = -0.1 V to V _{CC} +0.1 V, V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40°C < T < 125 °C	66			dB			
	Common mode rejection ratio	T = 25 °C	73	87					
SVR	20 log $(\Delta V_{CC}/\Delta V_{io})$ (V _{CC} =3.3 V to 16 V, V _{out} = V _{icm} V _{CC} /2)	-40°C < T < 125 °C	70						
A _{vd}	Large signal voltage gain	T = 25 °C	100	110					
	$(V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V), R_L > 1 M\Omega)$	-40°C < T < 125 °C	90						
Vou	High level output voltage	R _L = 10 kΩ, T = 25 °C			70				
* OH	V_{id} = +1 V, V_{OH} = V_{CC} - V_{out}	R _L = 10 kΩ -40°C < T < 125 °C			100	mV			
Val	Low level output voltage	R _L = 10 kΩ, T = 25 °C			70				
VOL	$V_{id} = -1 V,$	R _L = 10 kΩ -40°C < T < 125 °C	T < 125 °C						

Table 7. Electrical characteristics at V_{CC+} = +16 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 ° C, and R_I =10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		V _{out} = V _{CC} , T = 25 °C	40 92				
	Isink	V _{out} = V _{CC} , -40°C < T < 125 °C	35				
lout	1	V _{out} = 0 V, T = 25 °C	30	90			
	Isource	V _{out} = 0 V, -40°C < T < 125 °C					
	Supply current	T = 25 °C		45	60	μA	
ICC	(per operator, $V_{out} = V_{CC}/2$, R _L > 1 MΩ)	-40°C < T < 125 °C			60		
AC performance							
GBP	Gain bandwidth product		160	200		ku-	
Fu	Unity gain frequency	R = 100 kO C = 100 pE		160		KIIZ	
Φ _m	Phase margin	$R_{L} = 100 \text{ ksz} C_{L} = 100 \text{ pr}$		55		degrees	
G _m	Gain margin			9		dB	
SR	Slew rate	$R_L = 100 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to } V_{CC} - 0.5 \text{ V}$		0.12		V/µs	
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		5		μV _{pp}	
e _n	Equivalent input noise voltage	f = 1 kHz		60		nV	
		f = 10 kHz				\sqrt{Hz}	
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1$ kHz, R _L = 100 k Ω , V _{icm} = 8 V, BW = 22 kHz, V _{out} = 1 V _{pp}		0.004		%	

Table 7. Electrical characteristics at V_{CC+} = +16 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 ° C, and R_L=10 k Ω connected to V_{CC}/2 (unless otherwise specified)

1. See Chapter 4.3: Input offset voltage drift over temperature on page 18

 Typical value is based on the Vio drift observed after 1000h at 125°C extrapolated to 25°C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. See *Chapter 4.4: Long term input offset voltage drift on page 19.*

Figure 2. Supply current vs. supply voltage at Figure 3. Input offset voltage distribution at $V_{1} = 16 V_{2}$

Figure 4. Input offset voltage distribution at V_{CC} = 10 V

Figure 6. Input offset voltage temperature coefficient distribution

Figure 5. Input offset voltage vs. temperature at $V_{CC} \mbox{=} 16 \mbox{ V}$

Figure 7. Input offset voltage vs. input common mode voltage

DocID024293 Rev 1

Figure 8. Output current vs. output voltage at $V_{2,2} = 3.3 V$

Figure 10. Output low-rail linearity performance ($R_L \ge 2 \ k\Omega$)

Figure 12. Bode diagram at V_{CC} = 3.3 V, R_L= 10 k Ω

Figure 11. Output high-rail linearity performance ($R_L \ge 2k\Omega$)

Figure 13. Bode diagram at V_{CC} = 3.3 V, R_L = 100 k Ω

14/31

DocID024293 Rev 1

Figure 16. Closed-loop gain vs. capacitive load

Figure 18. Negative slew rate

DocID024293 Rev 1

Figure 19. Positive slew rate

Figure 17. In-series resistor (R_{iso}) vs.

capacitive load

Figure 20. Slew rate vs. supply voltage

Figure 22. Noise vs. frequency at V_{CC} = 16 V

Figure 24. THD+N vs. frequency at

THD + N (%)

0.1

0.01

Figure 26. Output impedance vs. frequency in closed loop configuration

4 Application information

4.1 Operating voltages

The amplifiers of the TSX63x and TSX63xA series can operate from 3.3 to 16 V. Their parameters are fully specified at 3.3, 5, 10 and 16 V power supplies. However, the parameters are very stable in the full V_{CC} range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 ° C to +125 ° C.

4.2 Rail-to-rail input

The TSX63x and TSX63xA are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from V_{CC^-} 0.1 V to V_{CC^+} + 0.1 V.

However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from V_{CC}- 0.1V to V_{CC+} - 1.65V).

Beyond V_{CC+} - 1.65 V, the op-amp is still functional but with a degraded performance as can be observed in the electrical characteristics section of this datasheet (mainly V_{io}).

These performances are suitable for a number of applications requiring rail-to-rail input and output.

The devices are guaranteed without phase reversal.

4.3 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using *Equation 1*.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25^{\circ} C)}{T - 25^{\circ} C} \right|$$

with T = -40 $^{\circ}$ C and 125 $^{\circ}$ C.

The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a C_{pk} (process capability index) greater than 2.

4.4 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using *Equation 2*.

Equation 2

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

A_{FV} is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

V_S is the stress voltage used for the accelerated test

V_U is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in *Equation 3*.

Equation 3

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

Where:

A_{FT} is the temperature acceleration factor

E_a is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10^{-5} eV.K⁻¹)

 T_{U} is the temperature of the die when V_{U} is used (K)

 T_S is the temperature of the die under temperature stress (K)

The final acceleration factor, A_F , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (*Equation 4*).

Equation 4

 $A_F = A_{FT} \times A_{FV}$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in *Equation 5* to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months = $A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$

To evaluate the op-amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The V_{io} drift (in μ V) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see *Equation 6*).

Equation 6

 $V_{CC} = maxV_{op}$ with $V_{icm} = V_{CC}/2$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (*Equation 7*).

Equation 7

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(months)}}$$

where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

4.5 High values of input differential voltage

In closed loop configuration, which represents the typical use of an op-amp, the input differential voltage is low (close to V_{io}). However, some specific conditions can lead to higher input differential values, such as:

- operation in an output saturation state
- operation at speeds higher than the device bandwidth, with output voltage dynamics limited by slew rate.
- use of the amplifier in a comparator configuration, hence in open loop

Use of the TSX631 in comparator configuration, especially combined with high temperature and long duration can create a permanent drift of V_{io} .

All channels of the dual and quad versions of the TSX632 and TSX634 are virtually unaffected when used in comparator configuration.

4.6 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.7 Macromodel

Accurate macromodels of the TSX63x and TSX63xA are available on STMicroelectronics' web site at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSX63x and TSX63xA operational amplifiers. They emulate the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, *but they do not replace on-board measurements*.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 SOT23-5 package information

Table 8. SOT23-5 package mechanical data

	Dimensions								
Ref.	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.013	0.015	0.019			
С	0.09	0.15	0.20	0.003	0.006	0.008			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
E	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.013	0.023			
К	0 °		10 °	0 °		10 °			

DocID024293 Rev 1

5.2 DFN8 2x2 package information

Figure 29. DFN8 2x2 package mechanical drawing

Table 9. DFN8 2x2 package mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.70	0.75	0.80	0.028	0.030	0.031			
A1	0.00	0.02	0.05	0.000	0.001	0.002			
b	0.15	0.20	0.25	0.006	0.008	0.010			
D		2.00			0.079				
E		2.00			0.079				
е		0.50			0.020				
L	0.045	0.55	0.65	0.018	0.022	0.026			
N		8			8				

5.3 MiniSO-8 package information

Figure 30. MiniSO-8 package mechanical drawing

Table 10. MiniSO-8 package mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			1.1			0.043			
A1	0		0.15	0		0.006			
A2	0.75	0.85	0.95	0.030	0.033	0.037			
b	0.22		0.40	0.009		0.016			
с	0.08		0.23	0.003		0.009			
D	2.80	3.00	3.20	0.11	0.118	0.126			
E	4.65	4.90	5.15	0.183	0.193	0.203			
E1	2.80	3.00	3.10	0.11	0.118	0.122			
е		0.65			0.026				
L	0.40	0.60	0.80	0.016	0.024	0.031			
L1		0.95			0.037				
L2		0.25			0.010				
k	0 °		8 °	0 °		8 °			
CCC			0.10			0.004			

DocID024293 Rev 1