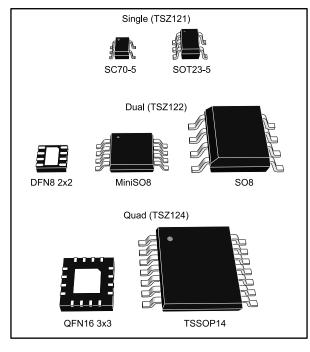
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Very high accuracy (5 μ V) zero drift micropower 5 V operational amplifiers

Datasheet - production data

Features

- Very high accuracy and stability: offset voltage 5 μV max at 25 °C, 8 μV over full temperature range (-40 °C to 125 °C)
- Rail-to-rail input and output
- Low supply voltage: 1.8 5.5 V
- Low power consumption: 40 μA max. at 5 V
- Gain bandwidth product: 400 kHz
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40 to 125 °C
- Micro-packages: SC70-5, DFN8 2x2, and QFN16 3x3

Benefits

- Higher accuracy without calibration
- Accuracy virtually unaffected by temperature change

Related products

• See *TSV711* or *TSV731* for continuous-time precision amplifiers

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Medical instrumentation

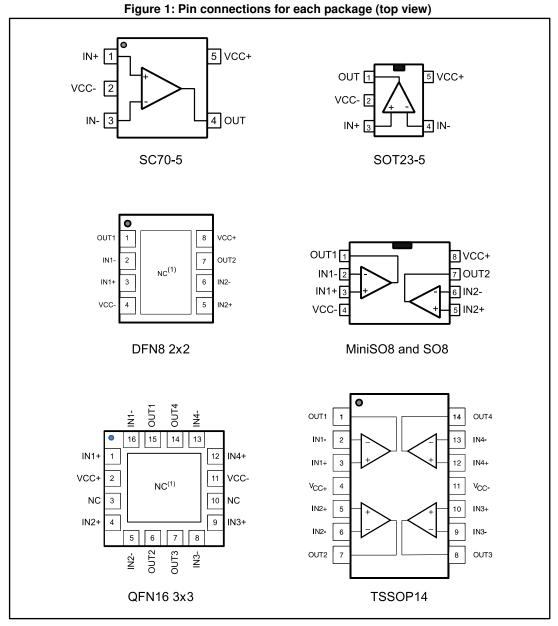
Description

The TSZ12x series of high precision operational amplifiers offer very low input offset voltages with virtually zero drift.

TSZ121 is the single version, TSZ122 the dual version, and TSZ124 the quad version, with pinouts compatible with industry standards.

The TSZ12x series offers rail-to-rail input and output, excellent speed/power consumption ratio, and 400 kHz gain bandwidth product, while consuming less than 40 μ A at 5 V. The devices also feature an ultra-low input bias current.

These features make the TSZ12x family ideal for sensor interfaces, battery-powered applications and portable applications.


DocID023563 Rev 7

This is information on a product in full production.

Con	itents		
1	Package	pin connections	3
2	Absolute	maximum ratings and operating conditions	4
3		I characteristics	
4	Electrica	I characteristic curves	9
5		on information1	
	5.1	Operation theory1	
		5.1.1 Time domain	
		5.1.2 Frequency domain1	6
	5.2	Operating voltages1	7
	5.3	Input pin voltage ranges1	7
	5.4	Rail-to-rail input1	7
	5.5	Input offset voltage drift over temperature1	8
	5.6	Rail-to-rail output1	8
	5.7	Capacitive load1	8
	5.8	PCB layout recommendations1	9
	5.9	Optimized application recommendation1	9
	5.10	EMI rejection ration (EMIRR)20	0
	5.11	Application examples2	0
		5.11.1 Oxygen sensor2	
		5.11.2 Precision instrumentation amplifier2	
•		5.11.3 Low-side current sensing	
6	•	information23	
		SC70-5 (or SOT323-5) package information24	
	6.2	SOT23-5 package information2	
	6.3	DFN8 2x2 package information2	
	6.4	MiniSO8 package information2	
	6.5	SO8 package information	
	6.6	QFN16 3x3 package information3	
	6.7	TSSOP14 package information	
7	•	information34	
8	Revision	history	5

1 Package pin connections

1. The exposed pads of the DFN8 2x2 and the QFN16 3x3 can be connected to VCC- or left floating.

2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)								
Symbol	Parameter		Value	Unit				
Vcc	Supply voltage ⁽¹⁾		6					
Vid	Differential input voltage (2)		±Vcc	V				
Vin	Input voltage ⁽³⁾		(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2					
lin	Input current ⁽⁴⁾		10	mA				
T _{stg}	Storage temperature		-65 to 150	℃				
Tj	Maximum junction temperature	150						
		SC70-5	205					
		SOT23-5	250					
		DFN8 2x2	57					
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾⁽⁶⁾	MiniSO8	190	°C/W				
		SO8	125					
		QFN16 3x3	39					
		TSSOP14	100					
	HBM: human body model ⁽⁷⁾		4	kV				
ESD	MM: machine model ⁽⁸⁾	300	V					
	CDM: charged device model ⁽⁹⁾	1.5	kV					
	Latch-up immunity		200	mA				

Notes:

⁽¹⁾All voltage values, except the differential voltage are with respect to the network ground terminal.

⁽²⁾The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

 $^{(3)}V_{cc}$ - V_{in} must not exceed 6 V, Vin must not exceed 6 V

⁽⁴⁾Input current must be limited by a resistor in series with the inputs.

⁽⁵⁾R_{th} are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

 $^{(7)}$ Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

⁽⁸⁾Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

⁽⁹⁾Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 2: Operating conditions

Symbol	Parameter	Value	Unit
Vcc	Supply voltage	1.8 to 5.5	V
V _{icm}	Common mode input voltage range	(V_{CC-}) - 0.1 to (V_{CC+}) + 0.1	V
T _{oper}	Operating free air temperature range	-40 to 125	°C

3 Electrical characteristics

Table 3: Electrical characteristics at V_{CC+} = 1.8 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 °C, and R_L = 10 k Ω connected to V_{CC}/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance				
		T = 25 °C		1	5	
V _{io}	Input offset voltage	-40 °C < T < 125 °C			8	μV
$\Delta V_{io} / \Delta T$	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C
	Input bias current	T = 25 °C		50	200 (2)	
lib	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 (2)	
	Input offset current	T = 25 °C		100	400 (2)	рА
lio	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾	
	Common mode rejection	T = 25 °C	110	122		
CMR	ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{ic} = 0 V$ to V _{CC} , $V_{out} = V_{CC}/2, R_L > 1 M\Omega$	-40 °C < T < 125 °C	110			dB
٨	Large signal voltage gain,	T = 25 °C	118	135		
A _{vd}	$V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V)$	-40 °C < T < 125 °C	110			
V	High-level output voltage	T = 25 °C			30	
Vон		-40 °C < T < 125 °C			70	
Max		T = 25 °C			30	mV
Vol	Low-level output voltage	-40 °C < T < 125 °C			70	
		T = 25 °C	7	8		
1.	I_{sink} ($V_{out} = V_{CC}$)	-40 °C < T < 125 °C	6			mA
lout	I _{source} (V _{out} = 0 V)	T = 25 °C	5	7		IIIA
	Isource $(\mathbf{v}_{out} = 0 \ \mathbf{v})$	-40 °C < T < 125 °C	4			
	Supply current	T = 25 °C		28	40	
lcc	(per amplifier, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C			40	μA
		AC performance				
GBP	Gain bandwidth product			400		kHz
Fu	Unity gain frequency			300		KI IZ
φm	Phase margin	R_L = 10 k Ω , C_L = 100 pF		55		Degrees
Gm	Gain margin			17		dB
SR	Slew rate ⁽³⁾			0.17		V/µs
ts	Setting time	To 0.1 %, $V_{in} = 1 Vp-p$, R _L = 10 k Ω , C _L = 100 pF		50		μs
en	Equivalent input noise	f = 1 kHz		60		nV/√Hz
Un	voltage	f = 10 kHz		60		11 V / ¥1 IZ
∫en	Low-frequency peak-to- peak input noise	Bandwidth, $f = 0.1$ to 10 Hz		1.1		μVpp

Electrical characteristics

TSZ121, TSZ122, TSZ124

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Cs	Channel separation	f = 100 Hz		120		dB
	Initialization time	T = 25 °C		50		
t _{init}		-40 °C < T < 125 °C		100		μs

Notes:

⁽¹⁾See *Section 5.5: "Input offset voltage drift over temperature"*. Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

⁽²⁾Guaranteed by design

⁽³⁾Slew rate value is calculated as the average between positive and negative slew rates.

and $R_L = 10 \text{ k}\Omega$ connected to V _{cc} /2 (unless otherwise specified)								
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
		DC performance						
V	Input offect veltage	T = 25 °C		1	5			
Vio	Input offset voltage	-40 °C < T < 125 °C			8	μV		
ΔV _{io} /ΔT	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C		
l _{ib}	Input bias current	T = 25 °C		60	200 (2)			
lib	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 ⁽²⁾	5 4		
L	Input offset current	T = 25 °C		120	400 (2)	pА		
lio	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾			
	Common mode rejection	T = 25 °C	115	128				
CMR	ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{ic} = 0 V$ to V_{CC} , $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C	115			dB		
	Large signal voltage gain,	T = 25 °C	118	135				
A _{vd}	$V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V)$	-40 °C < T < 125 °C	110			1		
		T = 25 °C			30			
Vон	High-level output voltage	-40 °C < T < 125 °C			70	m)/		
M		T = 25 °C			30	mV		
Vol	Low-level output voltage	-40 °C < T < 125 °C			70			
		T = 25 °C	15	18				
	Isink (Vout = VCC)	-40 °C < T < 125 °C	12					
out		T = 25 °C	14	16		mA		
	I _{source} (V _{out} = 0 V)	-40 °C < T < 125 °C	10					
	Supply current	T = 25 °C		29	40			
lcc	$ (\text{per amplifier, } V_{\text{out}} = V_{\text{CC}}/2, \\ R_L > 1 \text{ M}\Omega) $	-40 °C < T < 125 °C			40	μA		
		AC performance						
GBP	Gain bandwidth product			400		kHz		
Fu	Unity gain frequency	R _L = 10 kΩ, C _L = 100 pF		300		κΠΖ		
φm	Phase margin	$n_L = 10 \text{ k}_2, \text{ CL} = 100 \text{ pF}$		56		Degrees		
Gm	Gain margin			19		dB		

Table 4: Electrical characteristics at V_{CC+} = 3.3 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 °C, and R_L = 10 k Ω connected to V_{CC}/2 (unless otherwise specified)

Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
SR	Slew rate ⁽³⁾			0.19		V/µs	
ts	Setting time	To 0.1 %, $V_{in} = 1 Vp-p$, $R_L = 10 k\Omega$, $C_L = 100 pF$		50		μs	
	Equivalent input noise	f = 1 kHz		40		nV/√Hz	
en	voltage	f = 10 kHz		40			
∫en	Low-frequency peak-to- peak input noise	Bandwidth, f = 0.1 to 10 Hz		0.8		μVpp	
Cs	Channel separation	f = 100 Hz		120		dB	
+ .	Initialization time	T = 25 °C		50		110	
t _{init}		-40 °C < T < 125 °C		100		μs	

Notes:

⁽¹⁾See *Section 5.5: "Input offset voltage drift over temperature"*. Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature. ⁽²⁾Guaranteed by design.

⁽³⁾Slew rate value is calculated as the average between positive and negative slew rates.

and R_L = 10 k Ω connected to V _{cc} /2 (unless otherwise specified)									
Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance									
	T = 25 °C		1	5					
input offset voltage	-40 °C < T < 125 °C			8	μV				
Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C				
Input bias current	T = 25 °C		70	200 (2)					
$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 (2)					
Input offset current	T = 25 °C		140	400 (2)	рА				
$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾					
Common mode rejection	T = 25 °C	115	136						
$\label{eq:constraint} \begin{array}{l} \mbox{ratio, 20 log} (\Delta V_{\rm icm}/\Delta V_{\rm io}), \\ V_{\rm ic} = 0 \mbox{ V to } V_{\rm CC}, \\ V_{\rm out} = V_{\rm CC}/2, \ R_L > 1 \ M\Omega \end{array}$	-40 °C < T < 125 °C	115							
Supply voltage rejection	T = 25 °C	120	140						
ratio, 20 log ($\Delta V_{CC}/\Delta V_{io}$), V _{CC} = 1.8 V to 5.5 V, V _{out} = V _{CC} /2, R _L > 1 M Ω	-40 °C < T < 125 °C	120			dB				
Large signal voltage gain,	T = 25 °C	120	135						
$V_{out} = 0.5 V \text{ to } (V_{CC} - 0.5 V)$	-40 °C < T < 125 °C	110							
	$V_{\text{RF}} = 100 \text{ mV}_{\text{p}}, \text{ f} = 400 \text{ MHz}$		84						
EMI rejection rate = -20 log	$V_{\text{RF}} = 100 \text{ mV}_{\text{p}}, \text{ f} = 900 \text{ MHz}$		87						
$(V_{RFpeak}/\Delta V_{io})$	$V_{\text{RF}} = 100 \text{ mV}_{\text{p}}, \text{ f} = 1800 \text{ MHz}$		90						
	$V_{\text{RF}} = 100 \text{ mV}_{\text{p}}, \text{ f} = 2400 \text{ MHz}$		91						
High-level output voltage	T = 25 °C			30	mV				
	ParameterInput offset voltageInput offset voltage drift (1)Input bias current $(V_{out} = V_{CC}/2)$ Input offset current $(V_{out} = V_{CC}/2)$ Common mode rejection ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{ic} = 0 V$ to Vcc, $V_{out} = V_{CC}/2$, RL > 1 MQSupply voltage rejection ratio, 20 log ($\Delta V_{cC}/\Delta V_{io}$), 	$\begin{tabular}{ c c c c } \hline Parameter & Conditions \\ \hline DC performance \\ \hline DC performance \\ \hline T = 25 °C \\ \hline Input offset voltage drift (1) & -40 °C < T < 125 °C \\ \hline Input bias current & T = 25 °C \\ \hline (V_{out} = V_{CC}/2) & -40 °C < T < 125 °C \\ \hline Input offset current & T = 25 °C \\ \hline (V_{out} = V_{CC}/2) & -40 °C < T < 125 °C \\ \hline Input offset current & T = 25 °C \\ \hline (V_{out} = V_{CC}/2) & -40 °C < T < 125 °C \\ \hline Common mode rejection ratio, 20 log (\Delta V_{icm}/\Delta V_{io}), \\ V_{ic} = 0 V to V_{CC}, \\ V_{out} = V_{CC}/2, R_L > 1 M\Omega \\ \hline Supply voltage rejection ratio, 20 log (\Delta V_{cC}/\Delta V_{io}), \\ V_{CC} = 1.8 V to 5.5 V, \\ V_{out} = V_{CC}/2, R_L > 1 M\Omega \\ \hline Large signal voltage gain, \\ V_{out} = 0.5 V to (V_{CC} - 0.5 V) \\ \hline HI rejection rate = -20 log \\ (V_{RFpeak}/\Delta V_{io}) & V_{RF} = 100 mV_p, f = 400 MHz \\ \hline V_{RF} = 100 mV_p, f = 2400 MHz \\ \hline V_{RF} = 100 mV_p, f = 2400 MHz \\ \hline V_{RF} = 100 mV_p, f = 2400 MHz \\ \hline V_{RF} = 100 mV_p, f = 2400 MHz \\ \hline V_{RF} = 100 mV_p, f = 2400 MHz \\ \hline V_{RF} = 100 mV_p, f = 2400 MHz \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline Parameter & Conditions & Min. \\ \hline DC performance \\ \hline DC performance \\ \hline T = 25 \ ^{\circ}C \\ \hline -40 \ ^{\circ}C < T < 125 \ ^{\circ}C \\ \hline -40 \ ^{\circ}C < T < 125 \ ^{\circ}C \\ \hline -40 \ ^{\circ}C < T < 125 \ ^{\circ}C \\ \hline \\ \hline Input offset voltage drift (1) \\ \hline -40 \ ^{\circ}C < T < 125 \ ^{\circ}C \\ \hline \\ Input offset current \\ (V_{out} = V_{CC}/2) \\ \hline \\ Input offset current \\ (V_{out} = V_{CC}/2) \\ \hline \\ \hline \\ Common mode rejection ratio, 20 log (\Delta V_{icm}/\Delta V_{io}), \\ V_{ic} = 0 \ V to \ V_{CC}, \\ V_{out} = V_{CC}/2, \ R_L > 1 \ M\Omega \\ \hline \\ Supply voltage rejection ratio, 20 log (\Delta V_{cC}/\Delta V_{io}), \\ V_{CC} = 1.8 \ V to \ 5.5 \ V, \\ V_{out} = V_{CC}/2, \ R_L > 1 \ M\Omega \\ \hline \\ \\ Large signal voltage gain, \\ V_{out} = 0.5 \ V to \ (V_{CC} - 0.5 \ V) \\ \hline \\ EMI rejection rate = -20 \ log (V_{RF} = 100 \ mV_{p}, \ f = 300 \ MHz \\ \hline \\ V_{RF} = 100 \ mV_{p}, \ f = 2400 \ MHz \\ \hline \\ $	$\begin{tabular}{ c c c c c } \hline Parameter & Conditions & Min. & Typ. \\ \hline DC performance \\ \hline DC performance \\ \hline DC performance \\ \hline T = 25 °C & 1 \\ \hline -40 °C < T < 125 °C & 1 \\ \hline -40 °C < T < 125 °C & 10 \\ \hline 10 \\ \hline 10 \\ Input offset voltage drift (1) & -40 °C < T < 125 °C & 10 \\ \hline 10 \\ Input bias current & T = 25 °C & 70 \\ \hline (V_{out} = V_{CC}/2) & -40 °C < T < 125 °C & 140 \\ \hline (V_{out} = V_{CC}/2) & -40 °C < T < 125 °C & 140 \\ \hline (V_{out} = V_{CC}/2) & -40 °C < T < 125 °C & 140 \\ \hline (V_{out} = V_{CC}/2) & -40 °C < T < 125 °C & 115 \\ \hline 136 \\ \hline 115 \\ \hline Common mode rejection \\ ratio, 20 log (\Delta V_{icm}/\Delta V_{io}), \\ V_{ic} = 0 V to V_{Cc}, \\ V_{out} = V_{CC}/2, R_L > 1 M\Omega & T = 25 °C & 115 \\ \hline Supply voltage rejection \\ ratio, 20 log (\Delta V_{CC}/\Delta V_{io}), \\ V_{Cc} = 1.8 V to 5.5 V, \\ V_{out} = V_{CC}/2, R_L > 1 M\Omega & T = 25 °C & 120 \\ \hline Large signal voltage gain, \\ V_{out} = 0.5 V to (V_{Cc} - 0.5 V) & -40 °C < T < 125 °C & 110 \\ \hline Large signal voltage gain, \\ V_{0ut} = 0.5 V to (V_{Cc} - 0.5 V) & -40 °C < T < 125 °C & 110 \\ \hline HI rejection rate = -20 log \\ (V_{RF} = 100 mV_p, f = 400 MHz & 84 \\ \hline V_{RF} = 100 mV_p, f = 1800 MHz & 90 \\ \hline V_{RF} = 100 mV_p, f = 2400 MHz & 91 \\ \hline \end{array}$	$\begin{array}{ c c c c c c } \hline Parameter & Conditions & Min. & Typ. & Max. \\ \hline DC performance \\ \hline DC performance \\ \hline DC performance \\ \hline T = 25 ^{\circ}C & 1 & 5 \\ \hline -40 ^{\circ}C < T < 125 ^{\circ}C & 10 & 30 \\ \hline Input offset voltage drift (') & -40 ^{\circ}C < T < 125 ^{\circ}C & 10 & 30 \\ \hline Input bias current & T = 25 ^{\circ}C & 70 & 200 ^{(2)} \\ (V_{out} = V_{CC}/2) & -40 ^{\circ}C < T < 125 ^{\circ}C & 300 ^{(2)} \\ \hline Input offset current & T = 25 ^{\circ}C & 140 & 400 ^{(2)} \\ (V_{out} = V_{CC}/2) & -40 ^{\circ}C < T < 125 ^{\circ}C & 140 & 400 ^{(2)} \\ \hline Common mode rejection \\ ratio, 20 \log (\Delta V_{icm}/\Delta V_{io}), \\ V_{ic} = 0 ^{\circ}V to ^{\circ}C_{c}, \\ V_{out} = V_{CC}/2, R_L > 1 ^{\circ}M\Omega & T = 25 ^{\circ}C & 115 & 136 \\ \hline Supply voltage rejection \\ ratio, 20 \log (\Delta V_{cC}/\Delta V_{io}), \\ V_{out} = V_{CC}/2, R_L > 1 ^{\circ}M\Omega & T = 25 ^{\circ}C & 120 & 140 \\ \hline Large signal voltage gain, \\ V_{out} = 0.5 ^{\circ}V to ^{\circ}V_{Cc} & -40 ^{\circ}C < T < 125 ^{\circ}C & 110 & \\ \hline V_{RF} = 100 ^{\circ}MV_{p}, f = 300 ^{\circ}MHz & 84 & \\ \hline V_{RF} = 100 ^{\circ}MV_{p}, f = 300 ^{\circ}MHz & 87 & \\ \hline V_{RF} = 100 ^{\circ}MV_{p}, f = 100 ^{\circ}MV_{p}, f = 100 ^{\circ}MHz & 90 & \\ \hline V_{RF} = 100 ^{\circ}MV_{p}, f = 2400 ^{\circ}MHz & 91 & \\ \hline \end{array}$				

Table 5: Electrical characteristics at $V_{CC+} = 5$ V with $V_{CC-} = 0$ V, $V_{icm} = V_{CC}/2$, T = 25 °C, and $R_L = 10$ k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Electrical characteristics

TSZ121, TSZ122, TSZ124

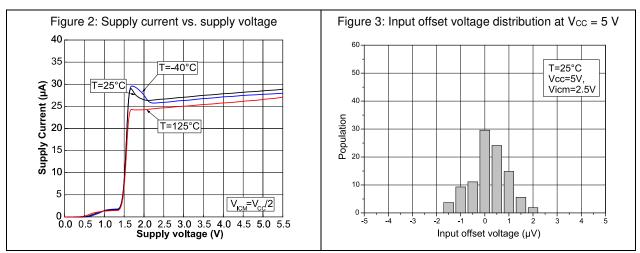
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		-40 °C < T < 125 °C			70		
V		T = 25 °C			30		
V _{OL}	Low-level output voltage	-40 °C < T < 125 °C			70		
		T = 25 °C	15	18			
	$I_{sink} (V_{out} = V_{CC})$	-40 °C < T < 125 °C	14			~^^	
lout		T = 25 °C	14	17		mA	
	Isource ($V_{out} = 0 V$)	-40 °C < T < 125 °C	12				
	Supply current (per	T = 25 °C		31	40		
lcc	amplifier, V _{out} = V _{CC} /2, R _L > 1 MΩ)	-40 °C < T < 125 °C			40	μA	
		AC performance					
GBP	Gain bandwidth product			400		kHz	
Fu	Unity gain frequency			300		КПИ	
φm	Phase margin	R∟ = 10 kΩ, C∟ = 100 pF		53		Degrees	
Gm	Gain margin			19		dB	
SR	Slew rate (4)			0.19		V/µs	
ts	Setting time	To 0.1 %, V_{in} = 100 mVp-p, R _L = 10 kΩ, C _L = 100 pF		10		μs	
	Equivalent input noise	f = 1 kHz		37			
en	voltage	f = 10 kHz	37			nV/√Hz	
∫en	Low-frequency peak-to- peak input noise	Bandwidth, f = 0.1 to 10 Hz		0.75		μVpp	
Cs	Channel separation	f = 100 Hz		120		dB	
+	Initialization time	T = 25 °C		50			
tinit	Initialization time	-40 °C < T < 125 °C		100		μs	

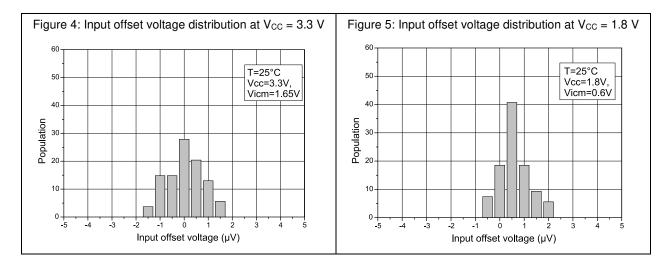
Notes:

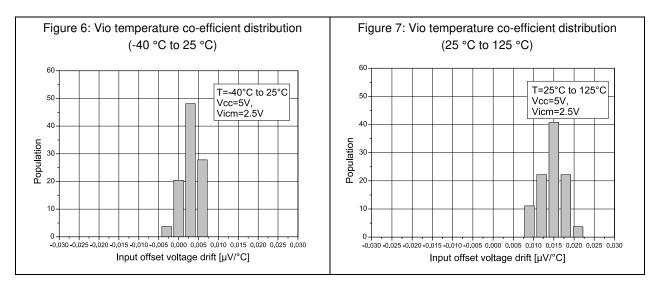
⁽¹⁾See *Section 5.5: "Input offset voltage drift over temperature"*. Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

⁽²⁾Guaranteed by design

⁽³⁾Tested on SC70-5 package

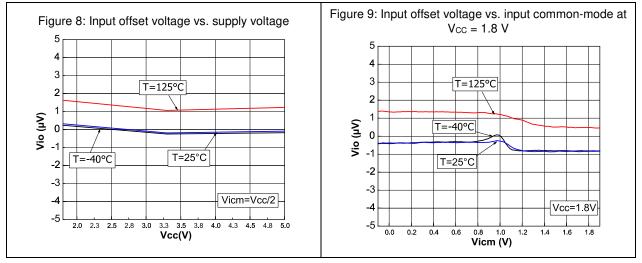

⁽⁴⁾Slew rate value is calculated as the average between positive and negative slew rates.

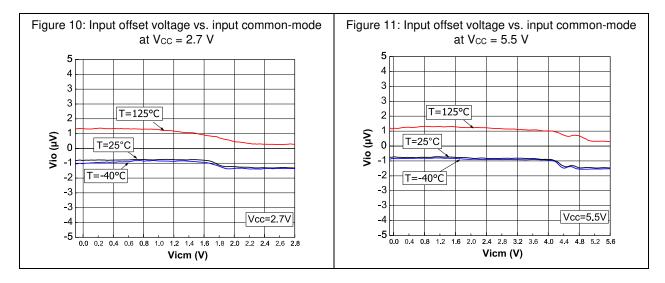


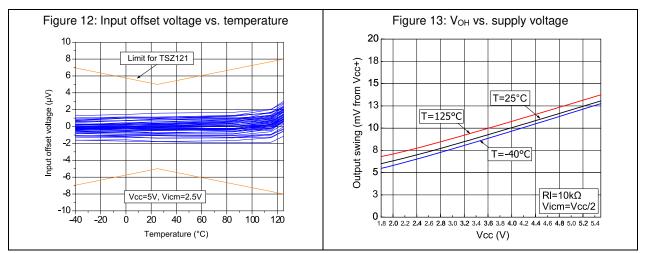

4

57

Electrical characteristic curves



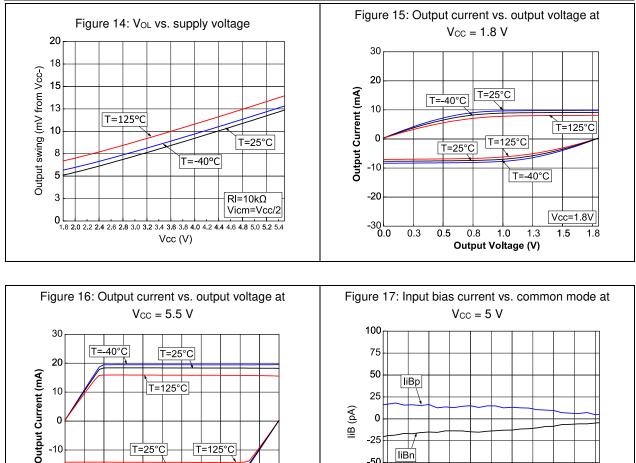


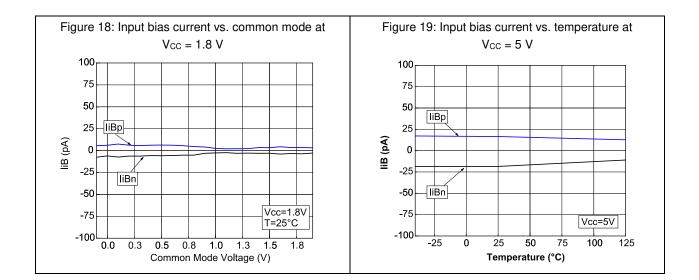


Electrical characteristic curves

TSZ121, TSZ122, TSZ124

10/36


-20


57

T=-40°C

-30 -30 - 10 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 **Output Voltage (V)**

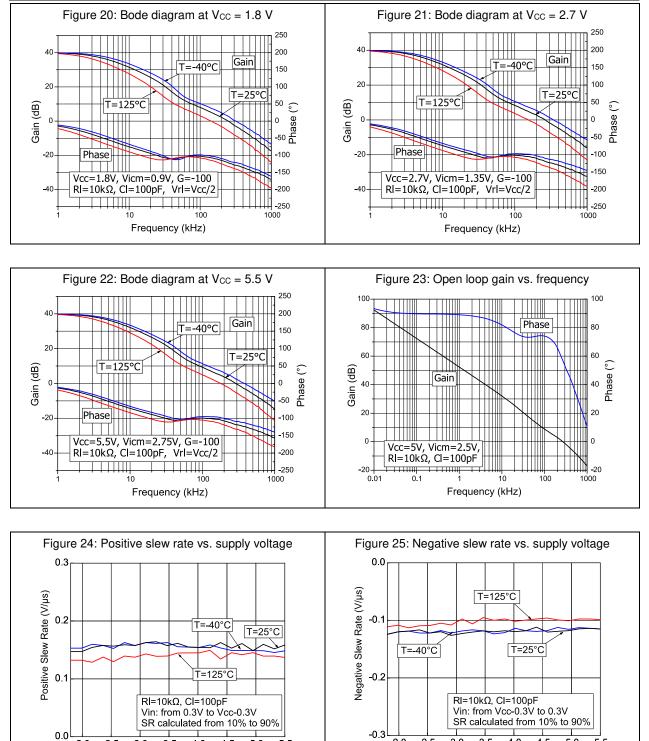
Electrical characteristic curves

Vcc=5.5V

-50

-75

DocID023563 Rev 7


Vcc=5V

T=25°C

-100 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Common Mode Voltage (V)

2.0

12/36

2.5

3.0

3.5 4.0

Supply Voltage (V)

4.5

5.0

5.5

DocID023563 Rev 7

2.0

2.5

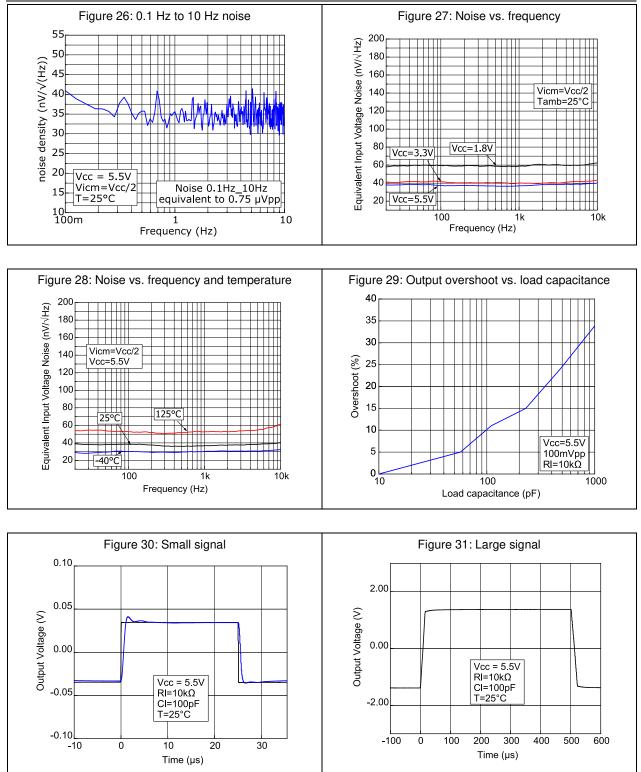
3.0

3.5

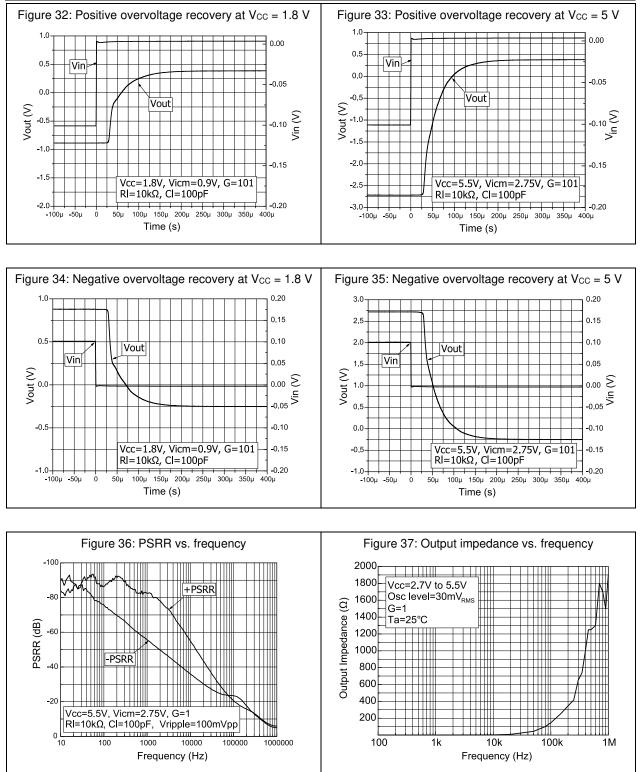
Supply Voltage (V)

4.0

4.5


5.0

5.5


Electrical characteristic curves

57

Electrical characteristic curves

TSZ121, TSZ122, TSZ124

5 Application information

5.1 Operation theory

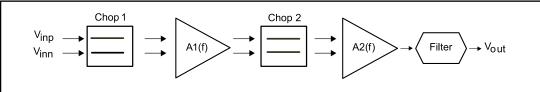
The TSZ121, TSZ122, and TSZ124 are high precision CMOS devices. They achieve a low offset drift and no 1/f noise thanks to their chopper architecture. Chopper-stabilized amps constantly correct low-frequency errors across the inputs of the amplifier.

Chopper-stabilized amplifiers can be explained with respect to:

- Time domain
- Frequency domain

5.1.1 Time domain

The basis of the chopper amplifier is realized in two steps. These steps are synchronized thanks to a clock running at 400 kHz.



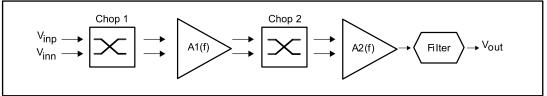
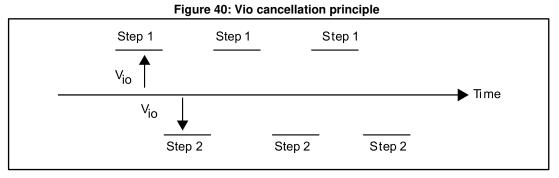


Figure 38: Block diagram in the time domain (step 1)

Figure 38: "Block diagram in the time domain (step 1)" shows step 1, the first clock cycle, where V_{io} is amplified in the normal way.


Figure 39: "Block diagram in the time domain (step 2)" shows step 2, the second clock cycle, where Chop1 and Chop2 swap paths. At this time, the V_{io} is amplified in a reverse way as compared to step 1.

At the end of these two steps, the average V_{io} is close to zero.

The A2(f) amplifier has a small impact on the V_{io} because the V_{io} is expressed as the input offset and is consequently divided by A1(f).

In the time domain, the offset part of the output signal before filtering is shown in *Figure 40: "Vio cancellation principle"*.

The low pass filter averages the output value resulting in the cancellation of the Vio offset.

The 1/f noise can be considered as an offset in low frequency and it is canceled like the $V_{\text{io}},$ thanks to the chopper technique.

5.1.2 Frequency domain

The frequency domain gives a more accurate vision of chopper-stabilized amplifier architecture.

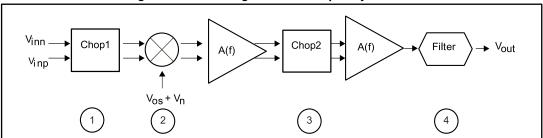


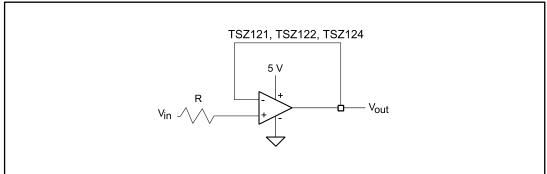
Figure 41: Block diagram in the frequency domain

The modulation technique transposes the signal to a higher frequency where there is no 1/f noise, and demodulate it back after amplification.

- 1. According to *Figure 41: "Block diagram in the frequency domain"*, the input signal V_{in} is modulated once (Chop1) so all the input signal is transposed to the high frequency domain.
- 2. The amplifier adds its own error (V_{io} (output offset voltage) + the noise V_n (1/f noise)) to this modulated signal.
- 3. This signal is then demodulated (Chop2), but since the noise and the offset are modulated only once, they are transposed to the high frequency, leaving the output signal of the amplifier without any offset and low frequency noise. Consequently, the input signal is amplified with a very low offset and 1/f noise.
- 4. To get rid of the high frequency part of the output signal (which is useless) a low pass filter is implemented.

To further suppress the remaining ripple down to a desired level, another low pass filter may be added externally on the output of the TSZ121, TSZ122, or TSZ124 device.

5.2 Operating voltages


TSZ121, TSZ122, and TSZ124 devices can operate from 1.8 to 5.5 V. The parameters are fully specified for 1.8 V, 3.3 V, and 5 V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSZ121, TSZ122, and TSZ124 device characteristics at 1.8 V and 5.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 ° C.

5.3 Input pin voltage ranges

TSZ121, TSZ122, and TSZ124 devices have internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect the input MOSFETs from electrical discharge.

If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device.

In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in *Figure 42: "Input current limitation"*.

Figure 42: Input current limitation

5.4 Rail-to-rail input

TSZ121, TSZ122, and TSZ124 devices have a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V.

5.5 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using *Equation 1*.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25 \,^{\circ}\text{C})}{T - 25 \,^{\circ}\text{C}} \right|$$

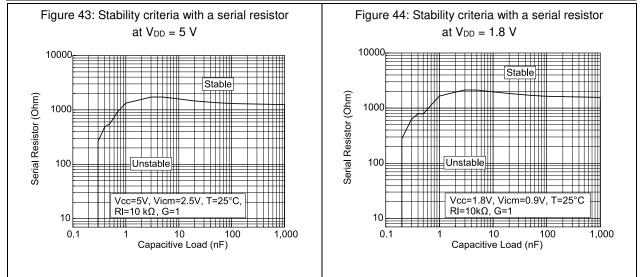
Where T = -40 °C and 125 °C.

The TSZ121, TSZ122, and TSZ124 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

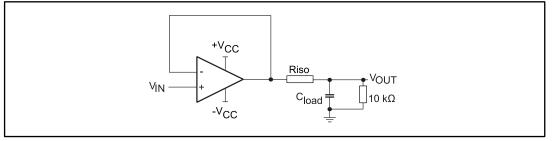
5.6 Rail-to-rail output

The operational amplifier output levels can go close to the rails: to a maximum of 30 mV above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

5.7 Capacitive load


Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable.

Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads.


Figure 43: "Stability criteria with a serial resistor at VDD = 5 V" and Figure 44: "Stability criteria with a serial resistor at VDD = 1.8 V" show the serial resistor that must be added to the output, to make a system stable. Figure 45: "Test configuration for Riso" shows the test configuration using an isolation resistor, Riso.

Application information

Figure 45: Test configuration for Riso

5.8 PCB layout recommendations

Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. Good practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance.

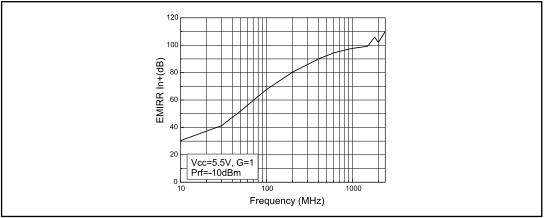
In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used.

The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.

5.9 Optimized application recommendation

TSZ121, TSZ122, and TSZ124 devices are based on chopper architecture. As they are switched devices, it is strongly recommended to place a 0.1 μ F capacitor as close as possible to the supply pins.

A good decoupling has several advantages for an application. First, it helps to reduce electromagnetic interference. Due to the modulation of the chopper, the decoupling capacitance also helps to reject the small ripple that may appear on the output.

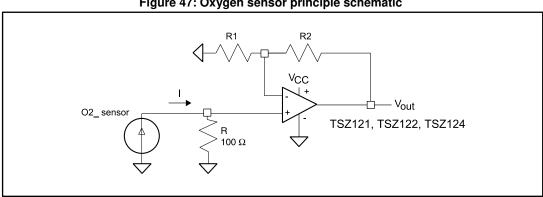


TSZ121, TSZ122, and TSZ124 devices have been optimized for use with 10 k Ω in the feedback loop. With this, or a higher value of resistance, these devices offer the best performance.

EMI rejection ration (EMIRR) 5.10

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF signal rectification.

The TSZ121, TSZ122, and TSZ124 have been specially designed to minimize susceptibility to EMIRR and show an extremely good sensitivity. Figure 46: "EMIRR on IN+ pin" shows the EMIRR IN+ of the TSZ121, TSZ122, and TSZ124 measured from 10 MHz up to 2.4 GHz.



5.11 **Application examples**

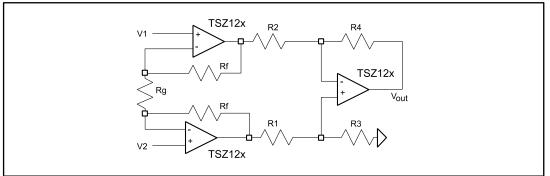
5.11.1 Oxygen sensor

The electrochemical sensor creates a current proportional to the concentration of the gas being measured. This current is converted into voltage thanks to R resistance. This voltage is then amplified by TSZ121, TSZ122, and TSZ124 devices (see Figure 47: "Oxygen sensor principle schematic").

The output voltage is calculated using *Equation 2*:

Equation 2

$$V_{out} = (I \times R - V_{io}) \times \left(\frac{R_2}{R_1} + 1\right)$$


As the current delivered by the O2 sensor is extremely low, the impact of the V_{io} can become significant with a traditional operational amplifier. The use of the chopper amplifier of the TSZ121, TSZ122, or TSZ124 is perfect for this application.

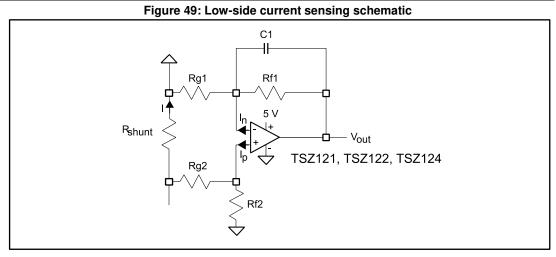
In addition, using TSZ121, TSZ122, or TSZ124 devices for the O2 sensor application ensures that the measurement of O2 concentration is stable even at different temperature thanks to a very good $\Delta V_{io}/\Delta T$.

5.11.2 Precision instrumentation amplifier

The instrumentation amplifier uses three op amps. The circuit, shown in *Figure 48:* "*Precision instrumentation amplifier schematic*", exhibits high input impedance, so that the source impedance of the connected sensor has no impact on the amplification.

The gain is set by tuning the Rg resistor. With R1 = R2 and R3 = R4, the output is given by *Equation 3*.

Equation 3


$$V_{out} = (V_2 - V_1) \left[\frac{R_4}{R_2} \cdot \frac{2R_f}{R_g} + 1 \right]$$

The matching of R1, R2 and R3, R4 is important to ensure a good common mode rejection ratio (CMR).

5.11.3 Low-side current sensing

Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using TSZ121, TSZ122, and TSZ124 devices (see *Figure 49: "Low-side current sensing schematic"*).

 V_{out} can be expressed as follows: Equation 4

$$V_{out} = R_{shunt} \times I\left(1 - \frac{R_{g2}}{R_{g2} + R_{f2}}\right) \left(1 + \frac{R_{f1}}{R_{g1}}\right) + I_p \left(\frac{R_{g2} \times R_{f2}}{R_{g2} + R_{f2}}\right) \times \left(1 + \frac{R_{f1}}{R_{g1}}\right) - I_n \times R_{f1} - V_{io} \left(1 + \frac{R_{f1}}{R_{g1}}\right)$$

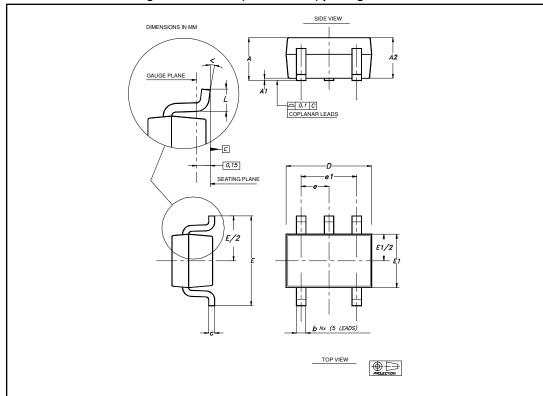
Assuming that $R_{f2} = R_{f1} = R_f$ and $R_{g2} = R_{g1} = R_g$, *Equation 4* can be simplified as follows: Equation 5

$$V_{out} = R_{shunt} \times I\left(\frac{R_{f}}{R_{g}}\right) - V_{io}\left(1 + \frac{R_{f}}{R_{g}}\right) + R_{f} \times I_{io}$$

The main advantage of using the chopper of the TSZ121, TSZ122, and TSZ124, for a low-side current sensing, is that the errors due to V_{io} and l_{io} are extremely low and may be neglected.

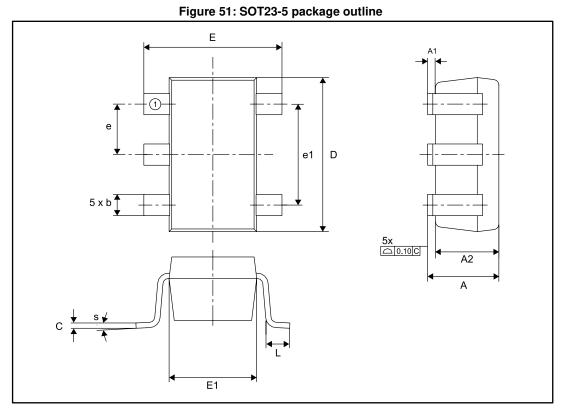
Therefore, for the same accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost.

Particular attention must be paid on the matching and precision of R_{g1} , R_{g2} , R_{f1} , and R_{f2} , to maximize the accuracy of the measurement.


6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 SC70-5 (or SOT323-5) package information



			Dir	nensions			
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80		1.10	0.032		0.043	
A1			0.10			0.004	
A2	0.80	0.90	1.00	0.032	0.035	0.039	
b	0.15		0.30	0.006		0.012	
с	0.10		0.22	0.004		0.009	
D	1.80	2.00	2.20	0.071	0.079	0.087	
E	1.80	2.10	2.40	0.071	0.083	0.094	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65			0.025		
e1		1.30			0.051		
L	0.26	0.36	0.46	0.010	0.014	0.018	
<	0°		8°	0°		8°	

6.2 SOT23-5 package information

Table 7: SOT23-5 mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			1.45			0.057			
A1		0.00	0.15		0.000	0.006			
A2	1.15	0.90	1.30	0.045	0.035	0.051			
b		0.30	0.50		0.012	0.020			
с		0.08	0.22		0.003	0.009			
D	2.90			0.114					
E	2.80			0.110					
E1	1.60			0.063					
е	0.95			0.037					
e1	1.90			0.075					
L	0.45	0.30	0.60	0.018	0.012	0.024			
S	4	0	8	4	0	8			

