imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TWR-MC36XSDEVB Tower System Platform

Figure 1. TWR-MC36XSDEVB

Table of Contents

1	Important Notice		3
2	Getting Started		4
3	Understanding the Tower System.		5
4	Getting to Know the Hardware		7
5	Installing the Software and Setting up the Hardware	. 1	2
6	Schematics	. 2	5
7	Board Layout	. 2	7
8	References	. 2	8
9	Revision History	. 2	9

Important Notice

Freescale provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This EVB may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This EVB is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact Freescale sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur.

Should the buyer purchase or use Freescale products for any such unintended or unauthorized application, the buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2014.

2 Getting Started

2.1 Kit Contents/Packing List

The TWR-MC36XSDEVB contents include:

- TWR-MC36XSDEVB tower board
- Plug-in connectors

2.2 Jump Start

Freescale's analog product development boards help to easily evaluate Freescale products. These tools support analog mixed signal and power solutions including monolithic ICs using proven high-volume SMARTMOS mixed signal technology, and system-in-package devices utilizing power, SMARTMOS and MCU silicon. Freescale products enable longer battery life, smaller form factor, component count reduction, ease of design, lower system cost and improved performance in powering state of the art systems.

- Go to www.freescale.com/analogtools
- Locate your kit
- Review your Tool Summary Page
- Look for

• Download documents, software, and other information

Once the files are downloaded, review the user guide JumpStart. The user guide includes setup instructions, BOM and schematics. Jump start bundles are available on each tool summary page with the most relevant and current information. The information includes everything needed for design.

2.3 Required Equipment and Software

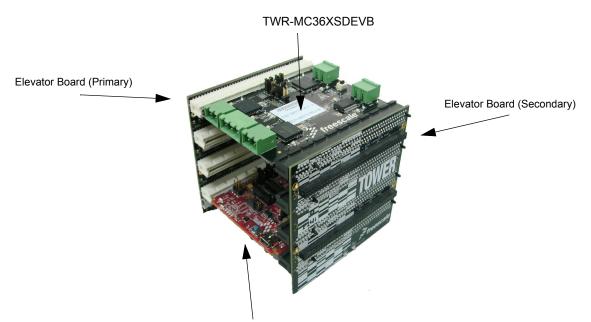
To use this kit, you need:

- Power supply 8.0 V 36 V with current limit set initially to 1.5 A 9.0 A
- Oscilloscope (preferably 4-channel) with current probe(s) (optional)
- Digital multimeter
- Typical loads (DC motor, bulbs)
- TWR-K70F120M MCU Tower board: http://www.freescale.com/TWR-K70F120M or TWR-K20D72M MCU Tower board: http://www.freescale.com/TWR-K20D72M
- CodeWarrior for MCUs (Eclipse IDE) family installed: http://www.freescale.com/CodeWarrior or compatible Kinetics. See Installing the Software and Setting up the Hardware.
- PE Micro's OSBDM/OSJTAG Tower Toolkit (REV 0): http://www.freescale.com/files/microcontrollers/hardware_tools/PE_OSBDM_OSJTAG_TOWER_TOOLKIT.exe

2.4 System Requirements

The kit requires the following to function properly with the software:

USB-enabled PC with Windows® XP or higher

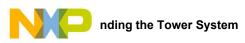


3 Understanding the Tower System

Freescale's Tower System peripheral module is designed to be combined and used with other Tower System modules.

The Freescale Tower System is a modular development platform for 8-, 16-, and 32-bit MCUs and MPUs enabling advanced development through rapid prototyping. Featuring more than fifty development boards or modules, the Tower System provides designers with building blocks for entry-level to advanced MCU development.

TWR-MC36XSDEVB can be associated with the TWR-K70F120M or TWR-K20D72M. Special care should be taken with the MCU board. Refer to Table 1.



Tower MCU Board (TWR-K70F120M in this example)

Table 1. TWR-MC36XSDEVB Compatibility with MCU Boards

Towerboard	Function	Comments	Workaround
TWR-MC36XSDEVB	Direct input for MC50XSD200 channel 1 (50_IN1)	This direct input is not available	NA
	MC06XSD200 Fail-Safe mode diode (D603)	D603 diode not available	Available in next version of board
TWR-MC36XSDEVB associated with	Direct input for MC16XSD200 channel 0 (20_IN0)	This direct input is not available	Add 0 Ω on R106 footprint of the K70 board
TWR-K70F120M	Direct input for MC50XSD200 channel 0 (50_IN0)	In fail-safe mode (without SPI) direct control of 50_IN0 is available	NA
		In normal mode (with SPI) the direct input function of the MC50XSD200 should be disabled for CH0 through SPI (50_IN0).	
TWR-MC36XSDEVB associated with	Direct input for MC16XSD200 channel 0 (20_IN0)	This direct input is not available	Add 0 Ω on R36 footprint of the K20 board
TWR-K20D72M	Direct input for MC06XSD200 channel 1 (06_IN1)	This direct input is not available	Add 0 Ω on R35 footprint of the K20 board
	Current/Temperature sensing: CSNS pin	Pin shared with microphone	Remove jumper J4 on the K20 board to disconnect microphone

3.1 Block Diagram

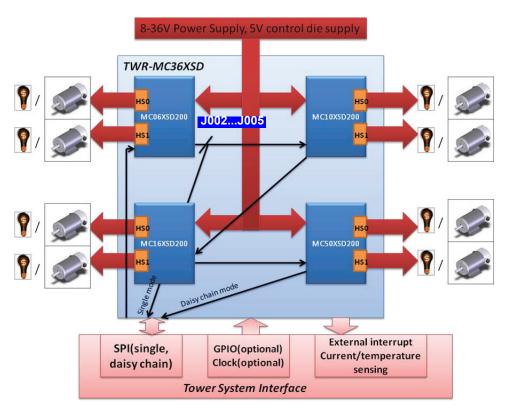


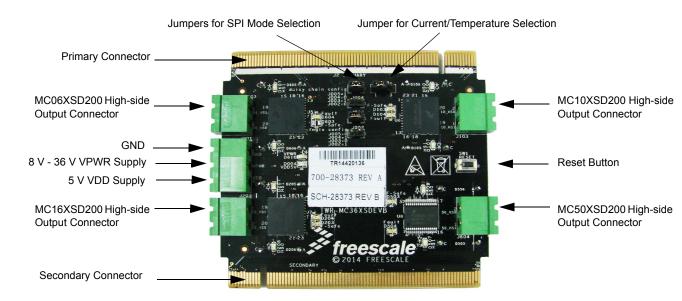
Figure 3. Block Diagram

3.1.1 Device Features

This tower system features the following Freescale products:

Table 2. Device Features

Device	Common Feature	Different Features
MC06XSD200	 Normal operating range: 8.0 V - 36 V, extended range: 6.0 V - 58 V, 3.3 V and 5.0 V compatible 16-bit SPI port for device control, configuration, and diagnostics at rates up to 8.0 MHz 	 Two fully-protected 6.0 mΩ (at 25 °C) high-side switches Up to 9.0 A steady-state current per channel
MC10XSD200	 Separate bulb and DC motor latched overcurrent handling Parallel output operating mode with improved switching synchronization 	 Two fully protected 10 mΩ (at 25 °C) high-side switches Up to 6.0 A steady state current per channel
MC16XSD200	 Individually programmable internal/external PWM clock signals (switching frequency, duty cycle, slew rate, switch-on time-shift) 	 Two fully-protected 16 mΩ (at 25 °C) high-side switches Up to 3.0 A steady-state current per channel
	 Overcurrent, short-circuit, and overtemperature protection with programmable auto-retry functions Accurate temperature and current sensing (high/low sensing ratios/offset compensation) 	
MC50XSD200	 Open load detection (channel in OFF and ON state), also for LED applications (7.0 mA typ.) 	 Two fully-protected 50 mΩ (at 25 °C) high-side switches Up to 1.2 A steady-state current per channel


4 Getting to Know the Hardware

4.1 Board Overview

The TWR-MC36XSDEVB is an easy-to-use tower peripheral module circuit board allowing the user to exercise functions for eXtreme Switch product base on Tower System. Tower System mirrors a debug port and communication port to PC used to debug/download program from CodeWarrior system.

4.2 Board Features

- Four eXtreme Switch devices: MC06XSD200, MC10XSD200, MC16XSD200, MC50XSD200
- Simple connections with MCU
- · Communication with 4 devices via SPI in daisy chain mode jumper selectable
- Single SPI communication supported
- LED on board indicate ON/OFF status of each High-side channel
- · Current/Temperature Sensing of four devices share one MCU AD converter pin

4.3 Board Description

Figure 4. TWR-MC36XSDEVB on Tower System Overview (without load)

Table 3. Board Description

Name	Description
Jumpers for SPI Mode Selection	Select SPI in single mode or daisy chain mode
Primary Connector	Plug into primary elevator board
MC06XSD200 High-side Output Connector	MC06XSD200 high-side output connector can drive load directly
GND	Ground connector header
8.0 V - 36.0 V VPWR Supply	Power supply for power stage
5.0 V VDD Supply	Power supply for logic
MC10XSD200 High-side Output Connector	MC10XSD200 high-side output connector can drive load directly

Table 3. Board Description (continued)

Name	Description
Secondary Connector	Plug into secondary elevator board
MC16XSD200 High-side Output Connector	MC16XSD200 high-side output connector can drive load directly
Reset Button	Reset all eXtreme Switches on board
MC50XSD200 High-side Output Connector	MC50XSD200 high-side output connector can drive load directly
Jumper for Current/Temperature Sensing	Jumper to select current/temperature sensing pin input from AN1 or AN5

4.4 LED Display

The following LEDs are provided as visual output devices for the TWR-MC36XSDEVB:

- 1. D607 Indicates when HS1 of MC06XSD200 is ON
- 2. D608 Indicates when HS0 of MC06XSD200 is ON
- 3. D604 Indicates when MC06XSD200 enter Fault Mode
- 4. D603 Indicates when MC06XSD200 enter Fail-safe Mode (NOT POPULATED)
- 5. D107 Indicates when HS1 of MC10XSD200 is ON
- 6. D108 Indicates when HS0 of MC10XSD200 is ON
- 7. D104 Indicates when MC10XSD200 enter Fault Mode
- 8. D103 Indicates when MC10XSD200 enter Fail-safe Mode
- 9. D207 Indicates when HS1 of MC16XSD200 is ON
- 10. D208 Indicates when HS0 of MC16XSD200 is ON
- 11. D204 Indicates when MC16XSD200 enter Fault Mode
- 12. D203 Indicates when MC16XSD200 enter Fail-safe Mode
- 13. D507 Indicates when HS1 of MC50XSD200 is ON
- 14. D508 Indicates when HS0 of MC50XSD200 is ON
- 15. D504 Indicates when MC50XSD200 enter Fault Mode
- 16. D503 Indicates when MC50XSD200 enter Fail-safe Mode
- 17. D610 Indicates when VPWR is supplied
- 18. D004 Indicates when VDD is supplied

4.5 Connectors

There are input/output connectors, which provide the following signals:

- 1. 06_HS0 high-side output channel 0 of MC06XSD200
- 2. 06_HS1 high-side output channel 1 of MC06XSD200
- 3. 10_HS0 high-side output channel 0 of MC10XSD200
- 4. 10_HS1 high-side output channel 1 of MC10XSD200
- 5. 16_HS0 high-side output channel 0 of MC16XSD200
- 6. 16_HS1 high-side output channel 1 of MC16XSD200
- 7. 50_HS0 high-side output channel 0 of MC50XSD200
- 8. 50_HS1 high-side output channel 1 of MC50XSD200
- 9. VPWR power supply of 8.0 V- 36 V
- 10. VDD power supply of 5.0 V
- 11. GND ground of board

4.6 Jumper Definitions

The following table defines the evaluation board jumper positions and explains their functions. (The default settings are shown in bold.)

Table 4. Jumper Definitions

	Jumper	Description	Setting	Connection
	J006 ADC input pin selection	1-2	Monitor to AN1 pin on elevator board	
		Abo input pin selection	2-3	Monitor to AN5 pin on elevator board

SPI Work Mode	Description	Connection			
SFT WORK MODE	Description	J002	J003	J004	J005
Single	Connect MC06XSD200 only, ignore other SPI devices	Short	Open	Short	Open
Daisy Chain	Connect the four devices by daisy chain	Open	Short	Open	Short

4.7 Elevator Connections

The TWR-MC36XSDEVB features two expansion card-edge connectors that interface to elevator boards in a Tower System: the Primary and Secondary Elevator connectors. Table 5 provides the pinouts for the Primary Elevator Connector. There is no connection for the Secondary Elevator Connectors.

Table 5: Primary Elevator Connector Pinouts

	Top Side of Prima	ry Connector Side	e B	Bottom Side of Primary Connector Side A			
Pin #	Name	Group	Usage	Pin #	Name	Group	Usage
B1	5V	Power	5.0V Power	A1	5V	Power	5.0V Power
B2	GND	Power	Ground	A2	GND	Power	Ground
B3	3.3V	Power	3.3V Power	A3	3.3V	Power	3.3V Power
B4	ELE_PS_SENSE	Power	Elevator Power Sense	A4	3.3V	Power	3.3V Power
B5	GND	Power	Ground	A5	GND	Power	Ground
B6	GND	Power	Ground	A6	GND	Power	Ground
B7	SDHC_CLK / SPI1_CLK	SDHC / SPI 1		A7	SCL0	I2C 0	
B8	SDHC_D3/SPI1_CS1_b	SDHC / SPI 1		A8	SDA0	I2C 0	
B9	SDHC_D3/SPI1_CS0_b	SDHC / SPI 1		A9	GPIO9 / CTS1	GPIO / UART	20_IN1
B10	SDHC_CMD/SPI1_MOSI	SDHC /SPI 1		A10	GPIO8 /SDHC_D2	GPIO /SDHC	10_IN1
B11	SDHC_D0 / SPI1_MISO	SDHC / SPI 1		A11	GPIO7 / SD_WP_DET	GPIO / SDHC	10_IN0
Mecha	inical Key	•		1 1		<u> </u>	
B12	ETH_COL	Ethernet		A12	ETH_CRS	Ethernet	
B13	ETH_RXER	Ethernet		A13	ETH_MDC	Ethernet	
B14	ETH_TXCLK	Ethernet		A14	ETH_MDIO	Ethernet	
B15	ETH_TXEN	Ethernet		A15	ETH_RXCLK	Ethernet	
B16	ETH_TXER	Ethernet		A16	ETH_RXDV	Ethernet	
B17	ETH_TXD3	Ethernet		A17	ETH_RXD3	Ethernet	
B18	ETH_TXD2	Ethernet		A18	ETH_RXD2	Ethernet	
B19	ETH_TXD1	Ethernet		A19	ETH_RXD1	Ethernet	
B20	ETH_TXD0	Ethernet		A20	ETH_RXD0	Ethernet	
B21	GPIO1 / RTS1	GPIO / UART	20_IN0	A21	SSI_MCLK	SSI	
B22	GPIO2 / SDHC_D1	GPIO / SDHC	06_IN1	A22	SSI_BCLK	SSI	

Table 5: Primary Elevator Connector Pinouts (continued)

Top Side of Primary Connector Side B					Bottom Side of Primary Connector Side A				
Pin #	Name	Group	Usage	Pin #	Name	Group	Usage		
B23	GPIO3	GPIO	CSB	A23	SSI_FS	SSI			
B24	CLKIN0	Clock		A24	SSI_RXD	SSI			
B25	CLKOUT1	Clock		A25	SSI_TXD	SSI			
B26	GND	Power	Ground	A26	GND	Power	Ground		
B27	AN7	ADC		A27	AN3	ADC			
B28	AN6	ADC		A28	AN2	ADC			
B29	AN5	ADC	CSNS	A29	AN1	ADC	CSNS		
B30	AN4	ADC		A30	AN0	ADC			
B31	GND	Power	Ground	A31	GND	Power	Ground		
B32	DAC1	DAC		A32	DAC0	DAC			
B33	TMR3	Timer		A33	TMR1	Timer			
B34	TMR2	Timer		A34	TMR0	Timer			
B35	GPIO4	GPIO	06_IN0	A35	GPIO6	GPIO	RSTB		
B36	3.3V	Power	3.3V Power	A36	3.3V	Power	3.3V Power		
B37	PWM7	PWM		A37	PWM3	PWM			
B38	PWM6	PWM		A38	PWM2	PWM			
B39	PWM5	PWM		A39	PWM1	PWM			
B40	PWM4	PWM		A40	PWM0	PWM	CLOCK		
B41	CANRX0	CAN 0		A41	RXD0	UART 0			
B42	CANTX0	CAN 0		A42	TXD0	UART 0			
B43	1WIRE	1-Wire		A43	RXD1	UART 1			
B44	SPI0_MISO (IO1)	SPI 0	MISO	A44	TXD1	UART 1			
B45	SPI0_MOSI (IO0)	SPI 0	MOSI	A45	VSS	Analog Vref			
B46	SPI0_CS0_b	SPI 0		A46	VDDA	Analog Vref			
B47	SPI0_CS1_b	SPI 0		A47	VREFA1	Analog Vref			
B48	SPI0_CLK	SPI 0	CLK	A48	VREFA2	Analog Vref			
B49	GND	Power	Ground	A49	GND	Power	Ground		
B50	SCL1	I2C 1		A50	GPIO14	GPIO			
B51	SDA1	I2C 1		A51	GPIO15	GPIO			
B52	GPIO5 / SPI0_HOLD (IO3)	GPIO / SPI 0	50_IN0 ⁽¹⁾	A52	GPIO16 / SPI0_WP (IO2)	GPIO / SPI 0			
B53	USB0_DP_PDOWN	USB 0		A53	GPIO17	GPIO			
B54	USB0_DM_PDOWN	USB 0		A54	USB0_DM	USB 0			
B55	IRQ_H	Interrupt		A55	USB0_DP	USB 0			
B56	IRQ_G	Interrupt		A56	USB0_ID	USB 0			
B57	IRQ_F	Interrupt	06_FSOB	A57	USB0_VBUS	USB 0			
B58	IRQ_E	Interrupt		A58	TMR7	Timer			
B59	IRQ_D	Interrupt	06_FSB	A59	TMR6	Timer			
B60	IRQ_C	Interrupt		A60	TMR5	Timer			
B61	IRQ_B	Interrupt		A61	TMR4	Timer			
B62	IRQ_A	Interrupt	06_SYNC	A62	RSTIN_b	Reset			
B63	EBI_ALE / EBI_CS1_b	EBI		A63	RSTOUT_b	Reset			
B64	EBI_CS0_b	EBI		A64	CLKOUT0	Clock			
B65	GND	Power	Ground	A65	GND	Power	Ground		
B66	EBI_AD15	EBI		A66	EBI_AD14	EBI			

	Top Side of Primary Connector Side B			Bottom Side of Primary Connector Side A				
Pin #	Name	Group	Usage	Pin #	Name	Group	Usage	
B67	EBI_AD16	EBI		A67	EBI_AD13	EBI		
B68	EBI_AD17	EBI		A68	EBI_AD12	EBI		
B69	EBI_AD18	EBI		A69	EBI_AD11	EBI		
B70	EBI_AD19	EBI		A70	EBI_AD10	EBI		
B71	EBI_R/W_b	EBI		A71	EBI_AD9	EBI		
B72	EBI_OE_b	EBI		A72	EBI_AD8	EBI		
B73	EBI_D7	EBI		A73	EBI_AD7	EBI		
B74	EBI_D6	EBI		A74	EBI_AD6	EBI		
B75	EBI_D5	EBI		A75	EBI_AD5	EBI		
B76	EBI_D4	EBI		A76	EBI_AD4	EBI		
B77	EBI_D3	EBI		A77	EBI_AD3	EBI		
B78	EBI_D2	EBI		A78	EBI_AD2	EBI		
B79	FB_D1	Flexbus		A79	FB_AD1	Flexbus		
B80	FB_D0	Flexbus		A80	FB_AD0	Flexbus		
B81	GND	Power	Ground	A81	GND	Power	Ground	
B82	3.3V	Power	3.3V Power	A82	3.3V	Power	3.3V Power	

Table 5: Primary Elevator Connector Pinouts (continued)

Notes:

1. The 50_IN1 is not available.

5 Installing the Software and Setting up the Hardware

5.1 Installing CodeWarrior on your Computer

This procedure explains how to obtain and install the latest version of CodeWarrior 10.x.

Note:

The sample software in this kit requires CodeWarrior 10.x and above. If CodeWarrior 10.x or above is already on your system, the steps in this section can be skipped.

1. Obtain the latest CodeWarrior 10.x installer file from the Freescale CodeWarrior website.

2. Run the executable file and follow the instructions.

In the GUI window you may select the component to install. For this module it is suggested to check the Kinetis box. Select the Kinetis component and click on "Next" to complete the installation.

Choose Components	
you want to install.	eWarrior Development Studio for Microcontrollers v 10.6
Check the components you wa install. Click Next to continue.	nt to install and uncheck the components you don't want to
Select components to install:	ColdFire/Sensors DSC Kinetis Qorivva S12Z S08/RS08
Space required: 1.4GB	Description Adds ColdFire support: new project wizard, build tools, debugger, trace and profile, examples.

Figure 5. Choose Components GUI

5.2 Get Example Project and Import 36 V eXtreme Component into Processor Expert Library

5.2.1 Get Example Project

Download example project and 36 V eXtreme component zip file:

https://www.freescale.com/webapp/sps/download/license.jsp?colCode=36V-EXTREMESWITCH-PEX-SW-EMC&appType=file1&location=nnull&DOWNLOAD_ID=null

For the latest information refer to the TWR-MC36XSDEVB website:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TWR-MC36XSDEVB

Unzip the downloaded file and check the folder (see Figure 6):

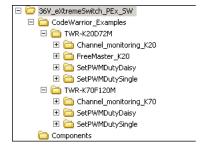


Figure 6. Example Project Folder Window

Folder Name	Folder Contents
CodeWarrior_Examples	Example project folder
TWR-K20D72M	Project for TWR-K20D72M
Channel_monitoring_K20	Example project for monitoring current of each channel and temperature of device
FreeMaster_K20	Example project for how to monitor Fault and Fail-Safe mode with Freemaster installed in PC, that also contains documents and example Freemaster project. Latest Freemaster installation package: http://www.freescale.com/freemaster
SetPWMDutyDaisy	Example project for how to set PWM duty cycle of each channel of four devices via SPI daisy chain
SetPWMDutySingle	Example project for how to set PWM duty cycle of each channel of MC06XSD200 on the board via SPI single mode
TWR-K70F120M	Project for TWR-K70F120M
Channel_monitoring_K70	Project for TWR-K70F120M with project Channel_monitoring_K20 in TWR-K20D72M folder
SetPWMDutyDaisy	Project for TWR-K70F120M with project SetPWMDutyDaisy in TWR-K20D72M folder
SetPWMDutySingle	Project for TWR-K70F120M with project SetPWMDutySingle in TWR-K20D72M folder
Components	Processor Expert Component folder

Table 6. 36V_eXtremeSwitch_PEx_SW

5.2.2 Import Component into Processor Expert Library

 Launch CW 10.x and click 'Processor Expert ->Import Component(s)' in menu. In the pop-up window, locate Component file (.PEupd) in example project folder: 36V_eXtremeSwitch_PEx_SW\Components. Select SPI_Devicexxxx.PEupd file then click 'open' (see Figure 7).

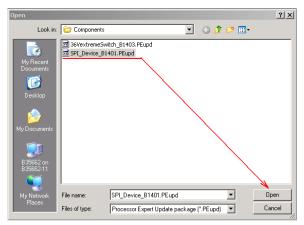


Figure 7. Example Project Folder Components Window

 If import is successful, then SPI_Device component is in 'Components Library ->SW ->User Component' (see Figure 8).

🔇 Component Inspector	💊 Components Library 🙁
Categories Alphabetical	Assistant Processors
Component	Component Level
🗄 🗁 Logical Device Driver	
🗄 🗁 Operating Systems	
🗄 🗁 SW	
🗄 🗁 Control	
🕀 🗁 Data	
🗄 🗁 DSP Function & f	·
🗄 🗁 Memory Manage	
🗄 🗁 Modem Library	
🗄 🗁 Motor Control	
🗄 🗁 Security Library	
🗄 🗁 Speech Library	
🗄 🗁 Telephony Librar	,
🗄 🗁 Tools Library	
🗄 🗁 Tutorials And De	
🖻 🗁 User Component	
SPI_Device	High

Figure 8. Example Project Folder Component Imported Window

- In the same pop-up window, locate Component file (.PEupd) in example project folder: 36V_eXtremeSwitch_PEx_SW\Components. Select 36VeXtremeSwitchxxxx.PEupd file then click 'open'. If import is successful, then SPI_Device component is in 'Components Library ->SW ->User Component'.
- 4. Now the SPI_Devicexxxx.PEupd and 36VeXtremeSwitchxxxx.PEupd bean files are two Processor Expert beans for TWR-MC36XSDEVB and ready for compiling or imported to projects (see Figure 9).

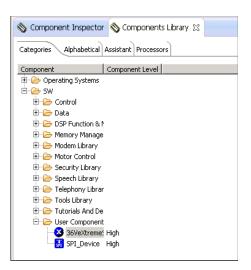


Figure 9. Example Project Folder Component Imported Window

5. Figure 10 diagrams how to import the downloaded example project into CodeWarrior 10.x.

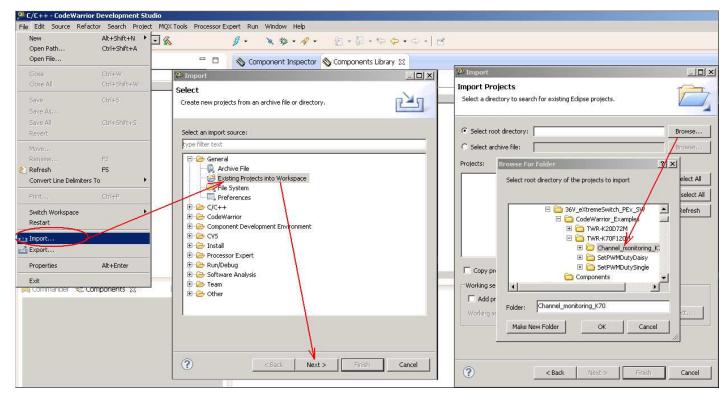


Figure 10. Import Example Project into CodeWarrior 10.x

If the example project is not used, instructions for the creation and setup of a new project for TWR-MC36XSDEVB with 36 VeXtremeSwitch Component are found in Section 5.2.3.

5.2.3 Launch CodeWarrior 10.x and Create a New Project with Processor Expert

1. Create an MCU bareboard project and name it (see Figure 11).

🎾 New Bareboard Project	
Create an MCU Bareboard Project	
Choose the location for the new project	
Project name: ES_example	
Use default location	
Location: D:\Profiles\b35662\workspace3\ES_example	Browse
Sack Next > Finish	Cancel

Figure 11. Create an MCU Bareboard Project

2. Choose the MCU class to be used in the tower MCU board (MK70N1M0 in this example) (see Figure 12).

🔎 New Bareboard Project	<u>_ ×</u>
Devices	
Select the derivative or board you would like to use	
ColdFire V2	
⊕- ColdFire V4	
😟 ColdFire V4e	
ter ColdFire+	
Kinetis E Series	
🖃 Kinetis K Series	
K1× Family	
E K2× Family	
E Kox Family	
E-K7× Family	
E-K70F (120 MHz) Family	
MK70FN1M0	
MK70FX512	-
Reck Next > Finish	Cancel

Figure 12. Choose the MCU Class

3. Choose the connections to be used (see Figure 13).

🥬 New Bareboard Project	_ 🗆 ×
Connections	
Choose the connection to use for this project	
Connection to be used:	
🔽 P&E USB MultiLink Universal [FX] / USB MultiLink	
P&E Cyclone	
P&E TraceLink	
Open Source JTAG	
Copen5DA	
🔲 Segger J-Link / J-Trace / SWO (SWD based)	
Connect to P&E USB MultiLink Universal [FX] / USB MultiL	
	=
1	
? < Back !	:> <u>E</u> inish Cancel

Figure 13. Choose the Connections

4. Select Processor Expert then select Finish (see Figure 14).

🎾 New Bareboard Project	
Rapid Application Development	
Processor Expert	
Decid Application Development	<u> </u>
Rapid Application Development	
Processor Expert	
· Processor Expert	
Start with perspective designed for	
 Hardware configuration (pin muxing and device ini 	tialization)
Use current perspective	
Initialize all peripherals	
Project Mode	_
Linked	
C Standalone	
	– 1
(?) < Back New	t > Einish Cancel
· · · · · · · · · · · · · · · · · · ·	

Figure 14. Select Processor Expert

5.2.4 Setup Project for the TWR-MC36XSDEVB

1. Find 36VeXtremeSwitch in the Component Library and Import it into this project (see Figure 15).

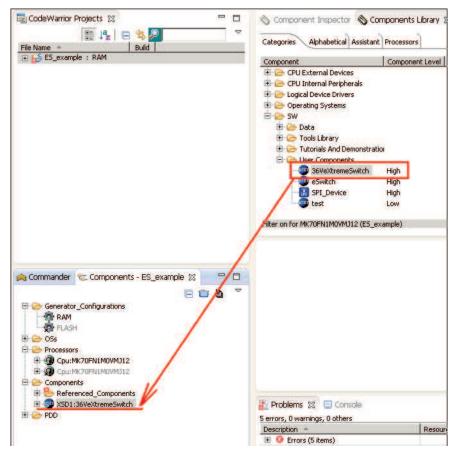


Figure 15. Import 36VeXtremeSwitch

Setup the 36VeXtremeSwitch component configuration according to the TWR-MC36XSDEVB connection. Set the SPI master component linked to the 36VeXtremeSwitch component which is automatically loaded to the project (see Figure 16).

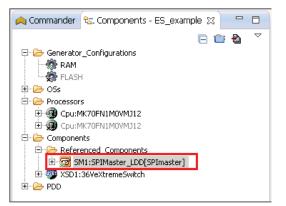


Figure 16. Setup 36VeXtremeSwitch

3. Double click this component to show configurations in the Component Inspector view (see Figure 17) and to setup SPI port/pin usage on TWR-K70F120M, SPI communication rate, and Auto initialization.

Value SPI2 Enabled PTD14/SPI2_SIN/SDHC0_D6/FBa_A2 Enabled PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 16 bits yes	PTD13/SPI2_SOUT/SDHC0_D5/FBa
Enabled Enabled PTD14/SPI2_SIN/SDHC0_D6/FBa_A2 Enabled PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 1 16 bits yes	PTD14/SPI2_SIN/SDHC0_D6/FBa_A2 PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0
Enabled PTD14/SPI2_SIN/SDHC0_D6/FBa_A2 Enabled PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 16 bits yes	PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0
PTD14/SPI2_SIN/SDHC0_D6/FBa_A2 Enabled PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 1 16 bits yes	PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0.
PTD14/SPI2_SIN/SDHC0_D6/FBa_A2 Enabled PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 1 16 bits yes	PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0.
Enabled PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 1 16 bits yes	PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0.
PTD13/SPI2_SOUT/SDHC0_D5/FBa PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 1 16 bits yes	PTD12/SPI2_SCK/FTM3_FLT0/SDHC0.
PTD12/SPI2_SCK/FTM3_FLT0/SDHC0 0 1 16 bits yes	PTD12/SPI2_SCK/FTM3_FLT0/SDHC0.
0 1 16 bits yes	
0 1 16 bits yes	
1 16 bits yes	Controlled by SPI_Device component
16 bits yes	Controlled by SPI_Device component
yes	Controlled by SPI_Device component
yes	
Low	
Change on leading edge	
None	
ng no	
0	
har: 0	
nde ()	
85.449219 µs	85.449 μs
0.095367 µs	0.095 µs
0.095367 µs	0.095 µs
0.095367 us	0.095 µs
	nde 0 nde 0 85.449219 µs 0.095367 µs 0.095367 µs

Figure 17. Configurations are Shown in Component Inspector

4. Double click 36VeXtremeSwitch component then Enable RSTB pin control (see Figure 18).



Figure 18. Enable RSTB Pin Control

 Double click 36VeXtremeSwitch->RSTB1 component and set pin as PTB9 for TWR-MC36XSDEVB whole board reset control (see Figure 19).

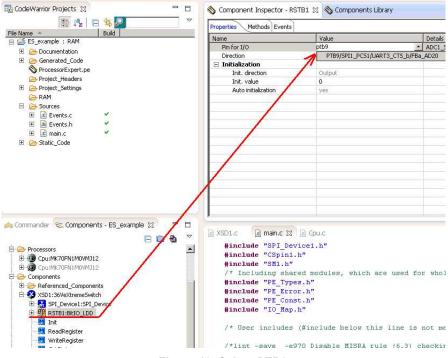


Figure 19. Select PTB9

 Double click the CSpin component in 36VeXtremeSwitch->SPI_Device->CSpin. Locate Pin for I/O and select PTE28. Select the pin that is used for the TWR-K70F120M SPI chip.

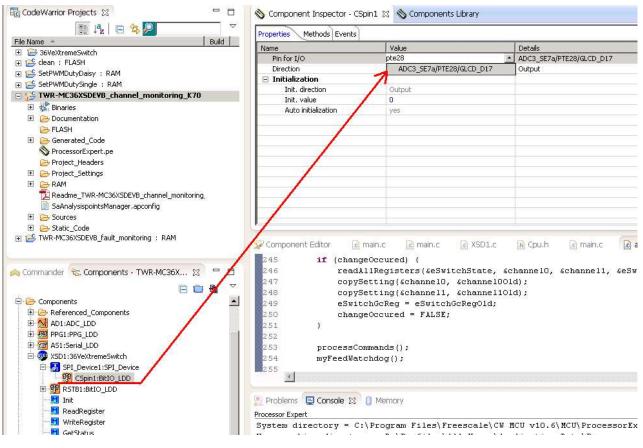


Figure 20. Select PTE28

7. To configure 36VeXtremeSwitch component, double click this component then configurations are shown in the Component Inspector view (see Figure 21).

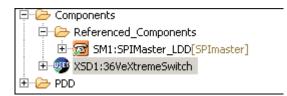


Figure 21. Configure 36VeXtremeSwitch

Device On Daisy Chain: if the jumper on TWR-MC36XSDEVB is set to single SPI mode (J002,J004 short;J003,J005 open) then it should be configured as 1; if jumper is set to daisy chain SPI mode (J002,J004 open,J003,J005 short) then it should be configured as 4 because four devices on board are linked by a daisy chain.

Configurations: the configurations are for eXtreme Switch settings, and can be shared between devices independently in the Devices On Daisy Chain list. Configure the devices as needed by the project.

5.2.5 Generate Code for the Application

After Configuration, generate the related source code for the application. Then the driver code eXtreme Switch device is generated and placed in Generated_Code folder in project view. The component can only generate driver code for application program, it cannot generate application code.

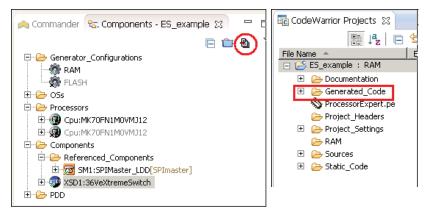


Figure 22. Generate Related Source Code

5.2.6 Using the Interface

Application code can be easily coded in the project and tested. For example, open the 36VeXtremeSwitch component methods list, drag SetPWMDuty cycle to main.c, add any necessary parameters, then the program is ready to compile.

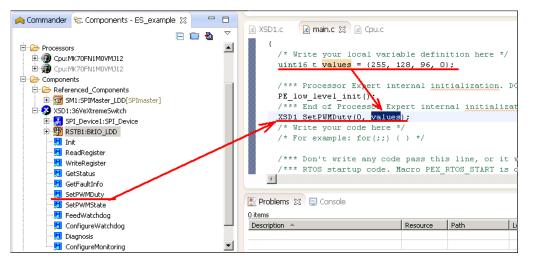
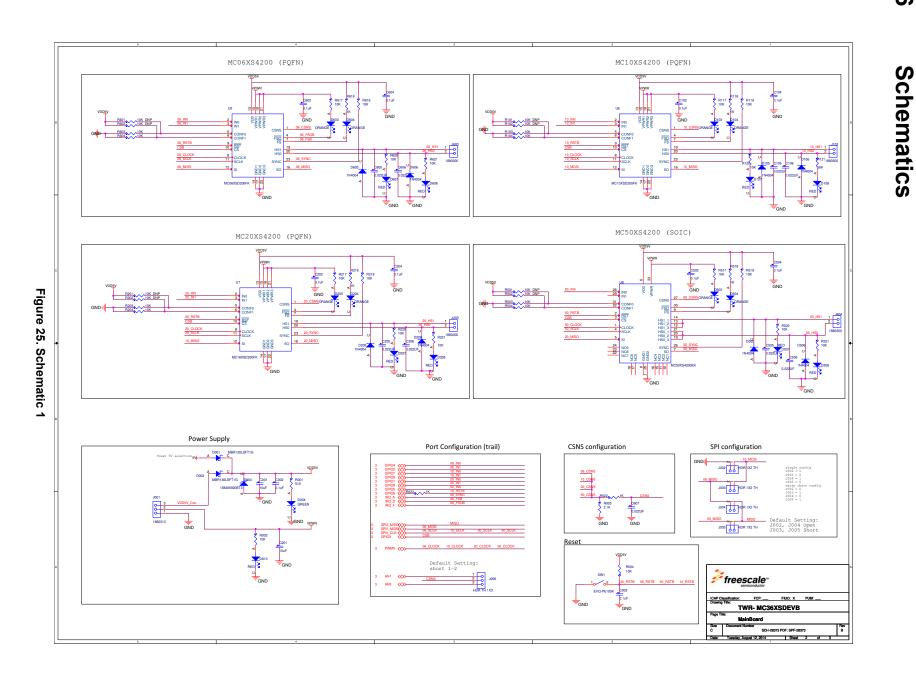



Figure 23. Generate Application Code


To compile/download and debug on board, click compile, the debug button in the toolbar, then CodeWarrior will download and launch the program on board.

File	Edit	Source	Refactor	Search	Project	MQX Tools	Processor Expert	Run	Window	Help	
	2255		S - 🗟			- 6		1000			A • 1 2 • A

5.3 Configuring the Hardware

