: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Panasonic ideas for life

Products to be discontinued.

FEATURES

1. Nominal operating power: High sensitivity of 50 mW By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 50 mW (minimum operating power of 32 mW) has been achieved.

2. Compact size

$15.0(\mathrm{~L}) \times 7.4(\mathrm{~W}) \times 8.2(\mathrm{H}) .591(\mathrm{~L}) \times$
$.291(\mathrm{~W}) \times .323(\mathrm{H})$

New pin layout (LT type) added. Ultra high sensitivity realized at 50 mW nominal operating power

TX-S RELAYS

3. High contact reliability

High contact reliability is achieved by the use of gold-clad twin crossbar contacts, low-gas formation materials, mold sealing the coil section, and by controlling organic gas in the coil.
*We also offer a range of products with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
*SX relays designed for low level loads are also available.
4. Outstanding surge resistance

Surge breakdown voltage between open contacts:
$1,500 \mathrm{~V} 10 \times 160 \mu \mathrm{sec}$. (FCC part 68)
Surge breakdown voltage between contact and coil:
$2,500 \mathrm{~V} 2 \times 10 \mu \mathrm{sec}$. (Telcordia)
5. Low thermal electromotive force (approx. $0.3 \mu \mathrm{~V}$)
The structure of the mold-sealed body block of the coil section achieves nominal operating power of 50 mW and high sensitivity, along with low thermal electromotive force, reduced to approximately $0.3 \mu \mathrm{~V}$.
6. A range of surface-mount types is also available.
SA: Low-profile surface-mount terminal type
ⓈL: High connection reliability surface-mount terminal type SS: Space saving surface-mount terminal type
7. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

1. Communications (XDSL, Transmission)
2. Measurement
3. Security
4. Home appliances, and audio/visual equipment
5. Automotive equipment
6. Medical equipment

ORDERING INFORMATION

TYPES

1. Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
		Part No.	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	TXS2-1.5V	TXS2-L-1.5V	TXS2-L2-1.5V	TXS2-LT-1.5V
	3V DC	TXS2-3V	TXS2-L-3V	TXS2-L2-3V	TXS2-LT-3V
	4.5 V DC	TXS2-4.5V	TXS2-L-4.5V	TXS2-L2-4.5V	TXS2-LT-4.5V
	6V DC	TXS2-6V	TXS2-L-6V	TXS2-L2-6V	TXS2-LT-6V
	9V DC	TXS2-9V	TXS2-L-9V	TXS2-L2-9V	TXS2-LT-9V
	12 V DC	TXS2-12V	TXS2-L-12V	TXS2-L2-12V	TXS2-LT-12V
	24V DC	TXS2-24V	TXS2-L-24V	TXS2-L2-24V	TXS2-LT-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add "-1" to the end of the part number for AgPd contacts (low level load).

2. Self-clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
		Part No.	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	\ TXS2-H-1.5V	\ TXS2-L-H-1.5V	\ TXS2-L2-H-1.5V	\ TXS2-LT-H-1.5V
	3V DC	\ TXS2-H-3V	\} ¢ TXS2-L-H-3V	\triangle TXS2-L2-H-3V	\triangle TXS2-LT-H-3V
	4.5V DC	\ TXS2-H-4.5V	\ TXS2-L-H-4.5V	\ TXS2-L2-H-4.5V	\ TXS2-LT-H-4.5V
	6V DC	\ TXS2-H-6V	\ TXS2-L-H-6V	\ TXS2-L2-H-6V	¢ TXS2-LT-H-6V
	9 V DC	\ TXS2-H-9V	¢ TXS2-L-H-9V	\ TXS2-L2-H-9V	\triangle TXS2-LT-H-9V
	12V DC	\triangle TXS2-H-12V	\ TXS2-L-H-12V	\ TXS2-L2-H-12V	\ TXS2-LT-H-12V
	24V DC	\ TXS2-H-24V	\ TXS2-L-H-24V	\ TXS2-L2-H-24V	\ TXS2-LT-H-24V

Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add " -1 " to the end of the part number for AgPd contacts (low level load).

3. Surface-mount terminal

1) Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
		Part No.	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	TXS2SD-1.5V	TXS2SD-L-1.5V	TXS2SD-L2-1.5V	TXS2SD-LT-1.5V
	3V DC	TXS2SD-3V	TXS2SD-L-3V	TXS2SD-L2-3V	TXS2SD-LT-3V
	4.5 V DC	TXS2S]-4.5V	TXS2SD-L-4.5V	TXS2SD-L2-4.5V	TXS2SD-LT-4.5V
	6V DC	TXS2SD-6V	TXS2SD-L-6V	TXS2SD-L2-6V	TXS2SD-LT-6V
	9V DC	TXS2SD-9V	TXS2SD-L-9V	TXS2SD-L2-9V	TXS2SD-LT-9V
	12 V DC	TXS2S-12V	TXS2SD-L-12V	TXS2SD-L2-12V	TXS2S[-LT-12V
	24V DC	TXS2SD-24V	TXS2SD-L-24V	TXS2SD-L2-24V	TXS2SD-LT-24V

]: For each surface-mounted terminal identification, input the following letter. SA type: $\underline{A}, ~ \widehat{\dagger} S L$ type: \underline{L}, SS type: \underline{S}
Standard packing: Tube: 40 pcs.; Case: 1,000 pcs.
Note: Please add " -1 " to the end of the part number for AgPd contacts (low level load).
2) Tape and reel packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching (L2)	2 coil latching (LT)
		Part No.	Part No.	Part No.	Part No.
2 Form C	1.5 V DC	TXS2SD-1.5V-Z	TXS2SD-L-1.5V-Z	TXS2SD-L2-1.5V-Z	TXS2SD-LT-1.5V-Z
	3V DC	TXS2S】-3V-Z	TXS2S[-L-3V-Z	TXS2SD-L2-3V-Z	TXS2SD-LT-3V-Z
	4.5 V DC	TXS2S[-4.5V-Z	TXS2SD-L-4.5V-Z	TXS2SD-L2-4.5V-Z	TXS2SD-LT-4.5V-Z
	6V DC	TXS2SD-6V-Z	TXS2S]-L-6V-Z	TXS2SD-L2-6V-Z	TXS2SD-LT-6V-Z
	9V DC	TXS2SD-9V-Z	TXS2SD-L-9V-Z	TXS2SD-L2-9V-Z	TXS2SD-LT-9V-Z
	12 V DC	TXS2S-12V-Z	TXS2SD-L-12V-Z	TXS2SD-L2-12V-Z	TXS2SD-LT-12V-Z
	24V DC	TXS2SD-24V-Z	TXS2SD-L-24V-Z	TXS2SD-L2-24V-Z	TXS2SD-LT-24V-Z

コ: For each surface-mounted terminal identification, input the following letter. SA type: \underline{A}, \triangle SL type: $\underline{L}, S S$ type: \underline{S}
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Notes: 1. Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from 1/2/3/4-pin side) is also available.
2. Please add " -1 " to the end of the part number for AgPd contacts (low level load). (Ex. TXS2SA-1.5V-1-Z)

RATING

1. Coil data
1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	33.3 mA	45Ω	50 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			16.7 mA	180Ω		
4.5 V DC			11.1 mA	405Ω		
6V DC			8.3 mA	720Ω		
9V DC			5.6 mA	1,620		
12V DC			4.2 mA	2,880 ${ }^{\text {, }}$		
24V DC			2.9 mA	8,229 ${ }^{\text {a }}$	70 mW	

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	23.3 mA	64.3Ω	35 mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			11.7 mA	257Ω		
4.5 V DC			7.8 mA	579Ω		
6V DC			5.8 mA	1,029 ${ }^{\text {a }}$		
9V DC			3.9 mA	2,314 Ω		
12 V DC			2.9 mA	4,114 Ω		
24 V DC			2.1 mA	11,520	50mW	

3) 2 coil latching (L2, LT)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operatingcurrent$[\pm 10 \%]$ (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$		Nominal operating power		Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	46.7 mA	46.7 mA	32.1Ω	32.1Ω	70mW	70mW	$150 \% \mathrm{~V}$ of nominal voltage
3V DC			23.3 mA	23.3 mA	129Ω	129Ω			
4.5V DC			15.6 mA	15.6 mA	289Ω	289Ω			
6 V DC			11.7 mA	11.7 mA	514Ω	514Ω			
9V DC			7.8 mA	7.8 mA	1,157 Ω	1,157 Ω			
12 V DC			5.8 mA	5.8 mA	2,057 Ω	2,057 Ω			
24 V DC			6.3 mA	6.3 mA	3,840 Ω	3,840 2	150 mW	150 mW	

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Standard contact: $\mathrm{Ag}+\mathrm{Au}$ clad, AgPd contact (low level load): $\mathrm{AgPd}+\mathrm{Au}$ clad (stationary), AgPd (movable)
Rating	Nominal switching capacity		1 A 30 V DC (resistive load)
	Max. switching power		30 W (DC) (resistive load)
	Max. switching voltage		110 V DC
	Max. switching current		1 A
	Min. switching capacity (Reference value)* ${ }^{-1}$		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$
	Nominal operating power	Single side stable	50 mW (1.5 to 12 V DC), 70 mW (24 V DC)
		1 coil latching	35 mW (1.5 to 12 V DC), 50 mW (24 V DC)
		2 coil latching	70 mW (1.5 to 12 V DC), 150 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,800 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Telcordia)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 5 ms [Max. 5 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 5×10^{7} (at 180 cpm)
	Electrical		Min. 2×10^{5} (1 A 30 V DC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

*1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (AgPd contact type or SX relays are available for low level load switching [10V DC, 10mA max. level])
*2 Refer to "6. Usage, Storage and Transport Conditions" in AMBIENT ENVIRONMENT section in Relay Technical Information.

REFERENCE DATA

1. Maximum switching capacity

2. Electrical life (1 A 30 V DC resistive load)

Tested sample: TXS2-4.5V, 6 pcs.
Operating speed: 20 cpm
Change of pick-up and drop-out voltage

5-(2). Coil temperature rise
Tested sample: TXS2-24V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

7. Ambient temperature characteristics Tested sample: TXS2-4.5V, 5 pcs.

2. Life curve

6-(1). Operate and release time (with diode) Tested sample: TXS2-4.5V, 10 pcs.

8-(1). High frequency characteristics (Isolation)
Tested sample: TXS2-4.5V, 2 pcs.

3. Mechanical life

Tested sample: TXS2-4.5V, 10 pcs.
Operating speed: 180 cpm

5-(1). Coil temperature rise
Tested sample: TXS2-4.5V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}, 70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$

6-(2). Operate and release time (without diode) Tested sample: TXS2-4.5V, 10 pcs.

8-(2). High frequency characteristics (Insertion loss)
Tested sample: TXS2-4.5V, 2 pcs.

9-(1). Malfunctional shock (single side stable) Tested sample: TXS2-4.5V, 6 pcs.

9-(2). Malfunctional shock (latching) Tested sample: TXS2-L2-4.5V, 6 pcs.

11-(1). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.

12. Pulse dialing test
(35 mA 48 V DC wire spring relay load)
Tested sample: TXS2-4.5V, 6 pcs.

11-(2). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.

Change of pick-up and drop-out voltage

10. Thermal electromotive force Tested sample: TXS2-4.5V, 6 pcs.

11-(3). Influence of adjacent mounting Tested sample: TXS2-4.5V, 6 pcs.

Change of contact resistance

Note: Data of surface-mount type are the same as those of PC board terminal type.

DIMENSIONS (mm inch) $\begin{aligned} & \text { Interested in CAD data? You can obtain CAD data for all products with a CAD Data mark } \\ & \text { from your local Panasonic Electric Works representative. }\end{aligned}$

1. Standard PC board terminal and Self clinching terminal

2. Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)		Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)	
	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)	Single side stable and 1 coil latching type	2 coil latching type (L2, LT)
SA type				
$\begin{array}{\|c} \text { SL type } \end{array}$				
SS type				

Schematic (Top view)

Single side stable

(Deenergized condition)

1 coil latching

(Reset condition)

2 coil latching (L2)

(Reset condition)

2 coil latching (LT)

(Reset condition)

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

Orientation (indicates PIN No.1) stripe

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type
mm inch

(ii) \triangle SL type
(iii) SS type

(2) Dimensions of plastic reel
mm inch

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure in the direction B:
9.8 N \{1 kgf\} or less

Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

