

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

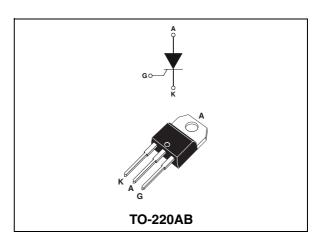
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

TYNx10 Series

STANDARD 10A SCR


Table 1: Main Features

Symbol	Value	Unit	
I _{T(RMS)}	10	Α	
V _{DRM} /V _{RRM}	400, 600 and 800	V	
I _{GT}	15	mA	

DESCRIPTION

The **TYNx10** Silicon Controlled Rectifiers is a high performance glass passivated technology.

This general purpose Silicon Controlled Rectifiers is designed for power supply up to 400Hz on resistive or inductive load.

Table 2: Order Codes

Part Numbers	Marking
TYN410RG	TYN410
TYN610RG	TYN610
TYN810RG	TYN810

Table 3: Absolute Ratings (limiting values)

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (180° conduction angle) $T_c = 100$ °C		10	Α	
IT _(AV)	Average on-state current (180° conducti	on angle)	T _c = 100°C	6.4	Α
l=0	Non repetitive surge peak on-state	$t_{p} = 8.3 \text{ ms}$	T _i = 25°C	105	Α
I _{TSM}	current	$t_p = 10 \text{ ms}$	1, - 23 0	100	
l²t	I ² t Value for fusing	$t_p = 10 \text{ ms}$	T _j = 25°C	50	A^2 s
dl/dt	Critical rate of rise of on-state current $I_G = 100 \text{ mA}$, $dI_G/dt = 0.1 \text{ A/}\mu\text{s}$		T _j = 125°C	50	A/µs
I _{GM}	Peak gate current $t_p = 20 \mu s$		T _j = 125°C	4	Α
$P_{G(AV)}$	Average gate power dissipation		T _j = 125°C	1	W
P_{GM}	Maximum gate power $t_p = 20 \mu s$		T _j = 125°C	10	W
V_{DRM}	TYN410			400	
V _{DRM}	Repetitive peak off-state voltage	TYN610	T _j = 125°C	600	V
* KKIVI	RRM			800	
T _{stg}	Storage junction temperature range			- 40 to + 150	°C
T_j	Operating junction temperature range			- 40 to + 125	O
TL	Maximum lead temperature for soldering during 10s at 2mm from case			260	°C

Tables 4: Electrical Characteristics ($T_j = 25$ °C, unless otherwise specified)

Symbol	Test Conditions			Value	Unit
I _{GT}	$-V_D = 12 \text{ V (D.C.)}$ $R_L = 33 \Omega$		MAX.	15	mA
V _{GT}			MAX.	1.5	V
V _{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $T_j = 110^{\circ}\text{C}$		MIN.	0.2	V
t _{gt}	$V_D = V_{DRM}$ $I_G = 40$ mA $dI_G/dt = 0.5$ A/ μ s		TYP.	2	μs
I _H	I _T = 100 mA Gate open		MAX.	30	mA
ΙL	$I_G = 1.2 \times I_{GT}$		TYP.	50	mA
dV/dt	Linear slope up to: $V_D = 67 \% V_{DRM}$ Gate open $T_j = 110 ^{\circ}C$		MIN.	200	V/µs
V _{TM}	I _{TM} = 20 A tp = 380 μs		MAX.	1.6	V
I _{DRM}	$V_{DRM} = V_{RRM}$	T _j = 25°C	MAX.	10	μΑ
I _{RRM}	*DHM = *HHM 	T _j = 110°C	IVI/A/A.	2	mA
t _q	$V_D = 67 \% V_{DRM}$ $I_{TM} = 20 A$ $V_R = 25 V$ $dI_{TM}/dt = 30 A/\mu s$ $dV_D/dt = 50 V/\mu s$ $T_j = 110 ^{\circ} C$		TYP.	70	μs

Table 5: Thermal Resistance

Symbol	Parameter		Unit
R _{th(j-c)}	Junction to case (D.C.)	2.5	°C/W
R _{th(j-a)}	Junction to ambient	60	°C/W

Figure 1: Maximum average power dissipation versus average on-state current

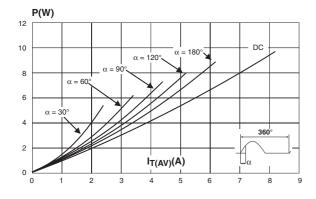
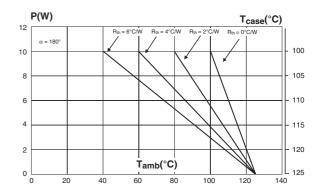



Figure 2: Correlation between maximum average power dissipation and maximum allowable temperature (T_{amb} and T_{lead})

2/6

Figure 3: Average on-state current versus case temperature

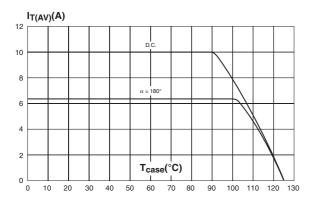


Figure 5: Relative variation of gate trigger current versus junction temperature

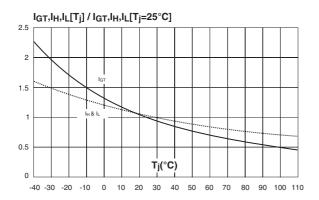


Figure 7: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding values of l^2t

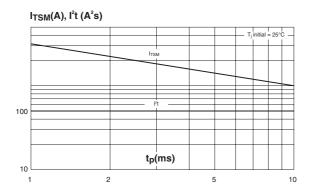


Figure 4: Relative variation of thermal impedance versus pulse duration

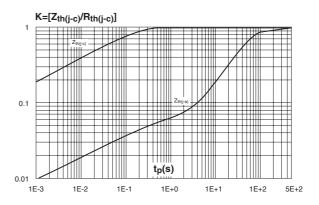


Figure 6: Surge peak on-state current versus number of cycles

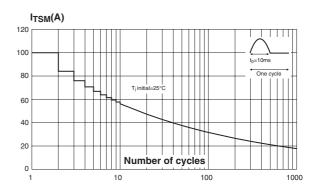
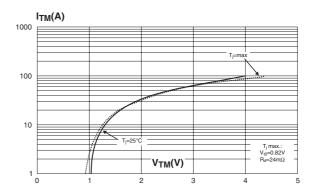
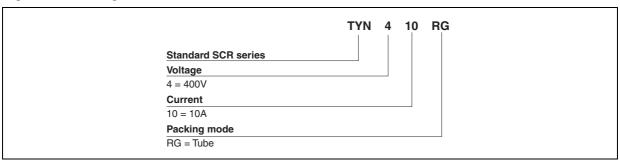




Figure 8: On-state characteristics (maximum values)

577

Figure 9: Ordering Information Scheme

Table 6: Product Selector

Part Numbers		Voltage (xxx)		Sensitivity Package		
Fait Numbers	400 V	600 V	800V	Sensitivity	Fackage	
TYN410RG	Х					
TYN610RG		Х		15 mA	TO-220AB	
TYN810RG			Х			

4/6

DIMENSIONS REF. Millimeters Inches Тур. Min. Тур. Max. Min. Max. В Α 15.20 15.90 0.598 0.625 Ø١ a1 3.75 0.147 13.00 14.00 0.511 a2 0.551 L В 10.00 10.40 0.393 0.409 0.034 b1 0.61 0.88 0.024 b2 1.23 1.32 0.048 0.051 14 С 4.40 4.60 0.173 0.181 13 0.49 0.70 0.019 0.027 c1 a1 c2 2.72 0.094 0.107 c2 2.40 2.40 2.70 0.094 0.106 е 6.20 0.259 6.60 0.244 ØΙ 3.75 0.147 3.85 0.151 15.80 16.40 16.80 0.622 14 0.646 0.661 2.95 L 2.65 0.104 0.116 12 1.14 1.70 0.044 0.066 13 1.14 1.70 0.044 0.066 M 2.60 0.102

Figure 10: TO-220AB Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Table 7: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
TYN410RG	TYN410				
TYN610RG	TYN610	TO-220AB	2.3 g	50	Tube
TYN810RG	TYN810	1			

Table 8: Revision History

Date	Revision	Description of Changes
Sep-2001	1A	First issue.
13-Feb-2006	2	TO-220AB delivery mode changed from bulk to tube. ECOPACK statement added.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

