

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

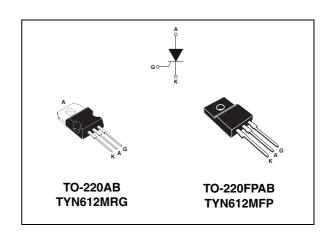
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

12 A SCR


Main features

Symbol	Value	Unit
I _{T(RMS)}	12	Α
V _{DRM} /V _{RRM}	600	٧
I _{GT} (min / max)	1.5 / 5	mA

Description

The TYN612M SCR is suitable to fit modes of control found in applications such as voltage regulation circuits for motorbikes, overvoltage crowbar protection, motor control circuits in power tools and kitchen aids, inrush current limiting circuits, capacitive discharge ignition.

The insulated fullpack package allows a back to back configuration.

Order codes

Part Numbers	Marking
TYN612MRG	TYN612M
TYN612MFP	TYN612MFP

Table 1. Absolute ratings (limiting values)

Symbol	Param	Value	Unit			
, RI	RMS on-state current	TO-220AB	T _c = 105° C	12	^	
I _{T(RMS)}	(180° conduction angle)	TO-220FPAB	T _c = 70° C	12	Α	
ı	Average on-state current	TO-220AB	T _c = 105° C	8	Α	
I _{T(AV)}	(180° conduction angle)	TO-220FPAB	T _c = 70° C	8	А	
	Non repetitive surge peak on-state	$t_p = 8.3 \text{ ms}$	T - 25° C	125	А	
I _{TSM} cı	current	t _p = 10 ms	$T_j = 25^{\circ} C$	120		
l ² t	I ² t Value for fusing	t _p = 10 ms	T _j = 25° C	72	A ² s	
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$ $F = 60 \text{ Hz}$ $T_j = 125^\circ$		T _j = 125° C	50	A/µs	
I _{GM}	Peak gate current $t_p = 20 \mu s$ $T_j = 125^{\circ} C$		4	Α		
P _{G(AV)}	Average gate power dissipation $T_j = 125^{\circ} C$		1	W		
T _{stg} T _j	Storage junction temperature range Operating junction temperature range		- 40 to + 150 - 40 to + 125	° C		
V_{RGM}	Maximum peak reverse gate voltage			5	V	

Characteristics TYN612M

1 Characteristics

Table 2. Electrical characteristics (T_i = 25° C, unless otherwise specified)

Symbol	Test Conditions			Value	Unit
	I_{GT} $V_{D} = 12 \text{ V}$ $R_{I} = 140 \Omega$		MIN.	1.5	mA
'GT			MAX.	5	IIIA
			MIN.	0.5	V
V_{GT}	V_{GT} $V_D = 12 \text{ V}$ $R_L = 140 \Omega$			0.7	
		MAX.	1.3		
$V_{\sf GD}$	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$	T _j = 125° C	MIN.	0.2	V
I _H	I _T = 500 mA Gate open		MAX.	20	mA
Ι <u></u>	I _G = 1.2 I _{GT}		MAX.	40	mA
dV/dt	V _D = 67 % V _{DRM} Gate open	T _j =125° C	MIN.	50	V/µs
V_{TM}	$I_{TM} = 24 \text{ A} t_p = 380 \mu \text{s}$ $T_j = 25^{\circ} \text{ C}$		MAX.	1.6	V
V _{t0}	Threshold voltage $T_j = 125^{\circ} C$		MAX.	0.85	V
R_d	Dynamic resistance $T_j = 125^{\circ} \text{ C}$		MAX.	30	mΩ
I _{DRM}	V - V	T _j = 25° C	MAX.	5	μΑ
I _{RRM}	$V_{DRM} = V_{RRM}$	T _j = 125° C	IVIAA.	2	mA

Table 3. Thermal resistance

Symbol	Parameter		Value	Unit
R _{th(j-c)}	Junction to case (DC)	TO-220AB	1.3	° C/W
		TO-220FPAB	4.5	
R _{th(j-a)}	lunction to ambient (DC)	TO-220AB	55	° C/W
	Junction to ambient (DC) TO-220FPAB		55	- C/VV

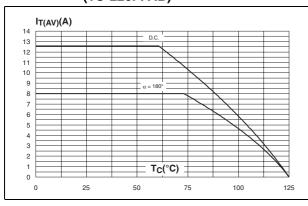
Figure 1. Maximum average power dissipation versus average on-state current

 $I_{T(AV)}(A)$

Figure 2. Average and D.C. on-state current versus case temperature (TO-220AB)

P(W)

11


10

9

TYN612M Characteristics

Figure 3. Average and D.C. on-state current versus case temperature (TO-220FPAB)

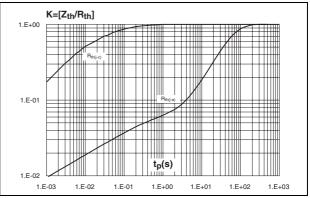
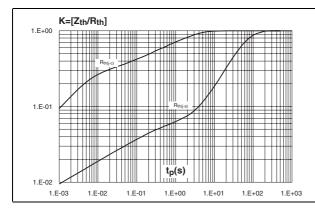



Figure 5. Relative variation of thermal impedance versus pulse duration (TO-220FPAB)

Figure 6. Relative variation of gate trigger current, holding current, latching current and gate trigger voltage versus junction temperature (typical values)

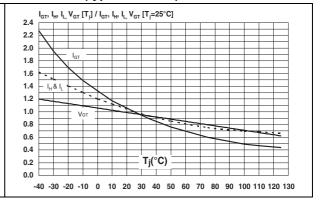
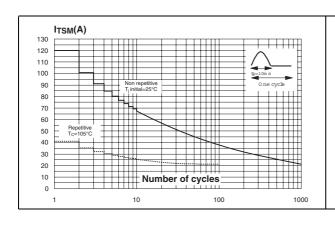
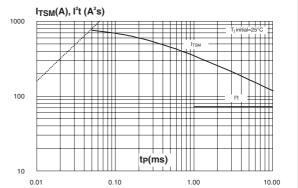




Figure 7. Surge peak on-state current versus Figure 8. number of cycles

Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding values of I^2t

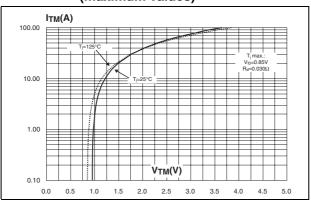
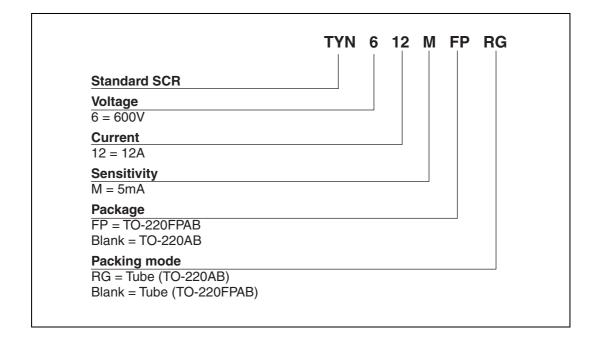



Figure 9. On-state characteristics (maximum values)

2 Ordering information scheme



TYN612M Package information

3 Package information

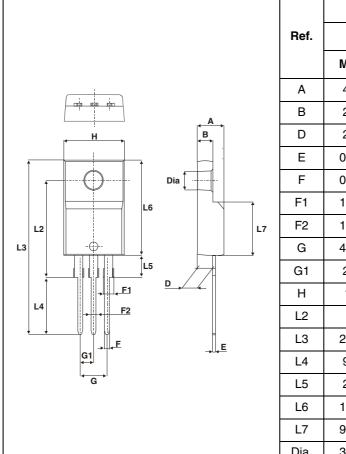

Epoxy meets UL94, V0

Table 4. TO-220AB dimensions

Package information TYN612M

Table 5. TO-220FPAB Dimensions

	Dimensions			
Ref.	Millim	neters	Inches	
	Min.	Max.	Min.	Max.
Α	4.4	4.6	0.173	0.181
В	2.5	2.7	0.098	0.106
D	2.5	2.75	0.098	0.108
Е	0.45	0.70	0.018	0.027
F	0.75	1	0.030	0.039
F1	1.15	1.70	0.045	0.067
F2	1.15	1.70	0.045	0.067
G	4.95	5.20	0.195	0.205
G1	2.4	2.7	0.094	0.106
Н	10	10.4	0.393	0.409
L2	16	Тур.	0.63 Typ.	
L3	28.6	30.6	1.126	1.205
L4	9.8	10.6	0.386	0.417
L5	2.9	3.6	0.114	0.142
L6	15.9	16.4	0.626	0.646
L7	9.00	9.30	0.354	0.366
Dia.	3.00	3.20	0.118	0.126

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

6/8

4 Ordering information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
TYN612MRG	TYN612M	TO-220AB	2.3 g	50	Tube
TYN612MFP	TYN612MFP	TO-220AB	2.0 g	50	Tube

5 Revision history

Date	Revision	Description of Changes
Sep-2002	1A	Last update.
10-Fev-2005	2	TO-220FPAB package added.
11-Apr-2007	3	Reformatted to current standards. Added typical and minimum values for $V_{\rm GT}$ in <i>Table 2</i> .
17-Apr-2007	4	Added V _{GT} curve in <i>Figure 6</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com