

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

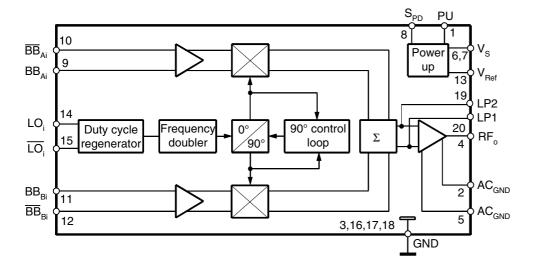
Features

- Supply Voltage: 5 V
- Low Power Consumption: 15 mA/5 V
- Output Level and Spurious Products Adjustable (Optional)
- Excellent Sideband Suppression by Means of Duty Cycle Regeneration of the LO Input Signal
- Phase-control Loop for Precise 90° Phase Shifting
- Power-down Mode
- Low LO Input Level: -15 dBm
- 50- Ω Single-ended LO and RF Port
- LO Frequency Range of 30 MHz to 300 MHz

Benefits

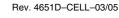
- Low Current Consumption
- Few External Components Result in Cost and Board Space Saving
- Adjustment Free Hence Saves Time

Electrostatic sensitive device.


Observe precautions for handling.

Description

The IC U2793B is a 300-MHz quadrature modulator that uses Atmel's advanced UHF process. It features low current consumption, single-ended RF ports and adjustment-free application, which makes the device suitable for all digital radio systems, e.g., GSM, PCN, JDC and WLAN. As an option, output level and spurious products are adjustable at pins 19 and 20. In conjunction with Atmel's U2795B mixer, an up-converter up to 2 GHz can be realized.


Figure 0-1. Block Diagram

300-MHz Quadrature Modulator

U2793B

1. Pin Configuration

Figure 1-1. Pinning SSO20

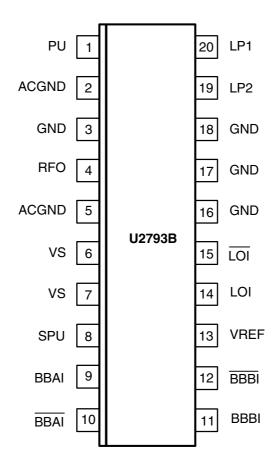


Table 1-1.Pin Description

Pin	Symbol	Function
1	PU	Power-up input
2	ACGND	AC ground
3	GND	Ground
4	RFO	RF output
5	ACGND	AC ground
6	VS	Supply voltage
7	VS	Supply voltage
8	SPU	Settling time power-up
9	BBAI	Baseband input A
10	BBAI	Baseband input A inverse
11	BBBI	Baseband input B
12	BBBI	Baseband input B inverse
13	VREF	Reference voltage (2.5 V)
14	LOI	Input LO
15	LOI	Input LO inverse, typically grounded
16	GND	Ground
17	GND	Ground
18	GND	Ground
19	LP2	Output low pass and power control
20	LP1	Output low pass and power control

2. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit		
Supply voltage	V _S	6	V		
Input voltage	V _i	0 to V _S	V		
Junction temperature	T _j	125	°C		
Storage temperature range	T _{Stg}	-40 to +125	°C		

3. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SSO20	R_{thJA}	140	K/W

4. Operating Range

Parameters	Symbol	Value	Unit	
Supply voltage	V_S	4.5 to 5.5	V	
Ambient temperature range	T _{amb}	-40 to +85	°C	

5. Electrical Characteristics

Test conditions (unless otherwise specified); $V_S = 5 \text{ V}$, $T_{amb} = 25^{\circ}\text{C}$, referred to test circuit. System impedance Zo = 50 Ω , f_{LO} =150 MHz, P_{LO} = -15 dBm, V_{BBi} = 1.0 V_{pp} , differential

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
1.1	Supply voltage range		6, 7	V _S	4.5	5	5.5	V	Α
1.2	Supply current		6, 7	I _S		15		mA	Α
2	Baseband Inputs, Pin 9-10, 11-	-12							
2.1	Input-voltage range (differential)			V_{BBi}		1000	1500	mVpp	D
2.2	Input impedance			Z _{BBi}		30		kΩ	D
2.3	Input-frequency range			f _{BBi}	0		50	MHz	D
2.4	Input voltage, common mode					2.5		V	
3	LO Input, Pins 14 and 15								
3.1	Frequency range			f_{LOi}	30		300	MHz	D
3.2	Input level ⁽¹⁾			P_{LOi}		-15	-5	dBm	D
3.3	Input impedance			Z _{iLO}		(2)		Ω	D
3.4	Voltage standing wave ratio			VSWR _{LO}		3.5			D
3.5	Duty-cycle range			DCR _{LO}	0.4		0.6		D

Notes: 1. Required LO level is a function of the LO frequency.

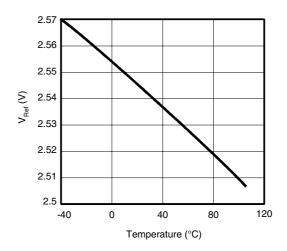
- 2. The LO input impedance is consisting of a 50 $\Omega\,\text{resistor}$ in series with a 15 pF capacitor.
- 3. With the pins 19 and 20 spurious performance especially for low frequency application can be improved by adding a chip capacitor between LP1 and LP2. In conjunction with a parallel resistor the output level can be adjusted to the following mixer stage without degration of LO suppression and noise performance which would decrease if the I/Q input level is reduced.
- 4. For T_{amb} = -40°C to +85°C and V_S = 4.5 V to 5.5 V

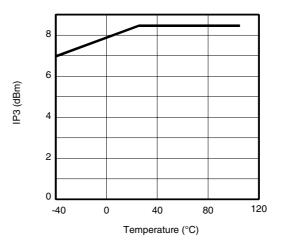
Electrical Characteristics (Continued)

Test conditions (unless otherwise specified); $V_S = 5$ V, $T_{amb} = 25$ °C, referred to test circuit. System impedance Zo = 50 Ω , f_{LO} =150 MHz, P_{LO} = -15 dBm, V_{BBi} = 1.0 V_{pp} , differential (Continued)

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
4	RF Output, Pin 4		1		ı				
4.1	Output level	$\begin{split} &f_{LO} = 150 \text{ MHz}, \\ &V_{BBi} = 1 \text{ V}_{pp}, \text{ differential} \\ &f_{LO} = 50 \text{ MHz}, \\ &V_{BBi} = 0.3 \text{ V}_{pp}, \text{ differential} \end{split}$		P _{RFo}	- 3	-1 0	+2	dBm	A/B
4.2	LO suppression	P _{LO} = -20 dBM		LO _{RFO}	32	45		dB	Α
4.3	Voltage standing wave ratio			VSWR _{RF}		1.4	2		D
4.4	Sideband suppression ⁽³⁾			SBS _{RFo}	35	45		dB	Α
4.5	Phase error ⁽⁴⁾			Pe		< 1		deg	D
4.6	Amplitude error			Ae		< ±0.25		dB	D
4.7	Noise floor	$V_{BBi} = 2 \text{ V}, V_{BBi} = 3 \text{ V}$ $V_{BBi} = V_{BBi} = 2.5 \text{ V}$		N _{FL}		-137 -143		dBm/Hz	D
5	Power-up Mode	<u> </u>							
5.1	Supply current	$V_{PU} \le 0.5 \text{ V, pins 6, 7}$ $V_{PU} = 1 \text{ V}$		I _{PU}		10	1	μA	D
5.2	Settling time	Pins 1 to 4, $C_{SPU} = 100 \text{ pF}$ $C_{LO} = 100 \text{ pF}$, $C_{RFo} = 1 \text{ nF}$		t _{SPU}		10		μs	D
6	Switching Voltage, Pin 1	·							
6.1	Power on			V _{PUON}	4			V	D
7	Reference Voltage, Pin 13								
7.1	Voltage range			V_{Ref}	2.375	2.5	2.625	V	Α
7.2	Output impedance			Zo _{Ref}		30		Ω	D

Notes: 1. Required LO level is a function of the LO frequency.


- 2. The LO input impedance is consisting of a 50 Ω resistor in series with a 15 pF capacitor.
- 3. With the pins 19 and 20 spurious performance especially for low frequency application can be improved by adding a chip capacitor between LP1 and LP2. In conjunction with a parallel resistor the output level can be adjusted to the following mixer stage without degration of LO suppression and noise performance which would decrease if the I/Q input level is reduced.
- 4. For T_{amb} = -40°C to +85°C and V_S = 4.5 V to 5.5 V



6. Diagrams

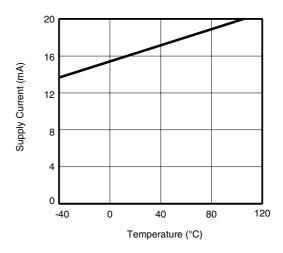

Figure 6-1. Reference Voltage versus T_{amb}

Figure 6-2. OIP3 versus T_{amb} , LO = 150 MHz, Level -10 dBm

Figure 6-3. Supply Current versus T_{amb}

Figure 6-4. Recommended LO Power Range versus LO Frequency at $T_{amb} = 25^{\circ} C$

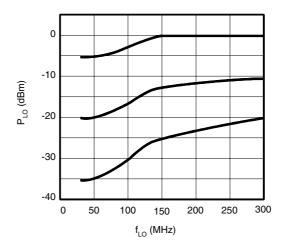


Figure 6-5. Output Power versus T_{amb}

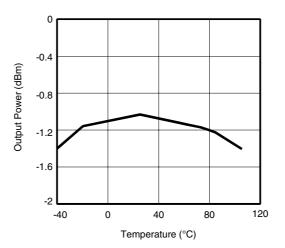
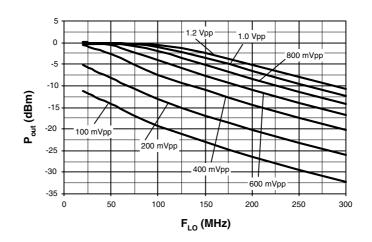
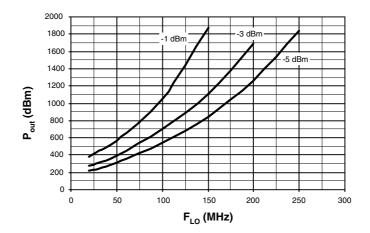


Figure 6-6. Typical Output Power versus LO Frequency at $T_{amb} = 25^{\circ} C$, $V_{BBi} = 250 \text{ mV}$ (Differential)

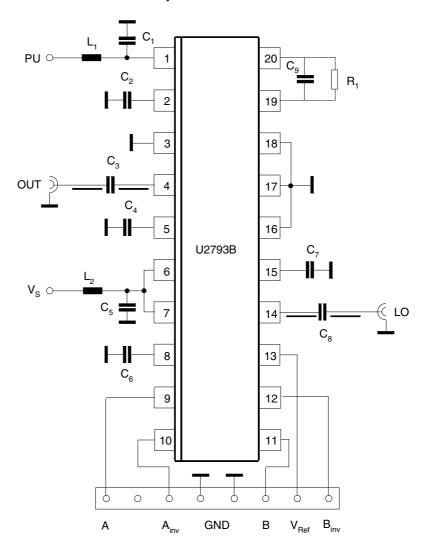


Figure 6-7. Typical Required V_{BBi} Input Signal (Differential) versus LO Frequency for $P_O = 1$ dBm and $P_O = -3$ dBm

7. Evaluation Board Drawings

Figure 7-1. Evaluation Board Circuitry

Part List

 C_1, C_2, C_3, C_4, C_6 = 1 nF C_7, C_8 = 100 pF C_5 = 100 nF C_9, R_1 = 1 pF to 10 pF = 50- Ω Microstrip - - - - = optional

The above listed components result in a PD settling time of $<20 \,\mu s$. The use of other component values will require consideration for time requirements in burst-mode applications.

Figure 7-2. PCB Layout Evaluation Board

11

8. Application Circuits

4651D-CELL-03/05

Bias network for AC-coupled baseband inputs (V_{BA} , V_{BB}).

 R_1 = 2.5 kΩ, R_2 ≤10 kΩ for \geq 35 dB LO suppression which is in reference to < 2 mV input offset.

Figure 8-1. Application Circuit with AC-coupled Baseband Inputs

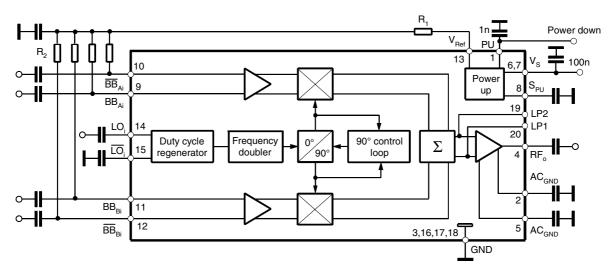
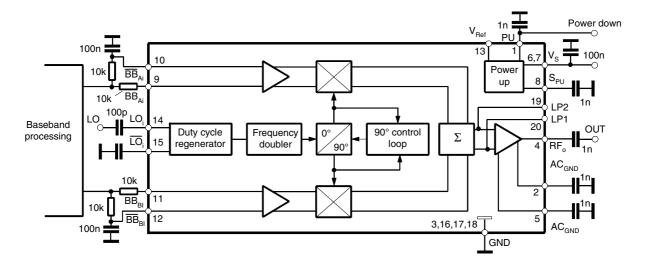
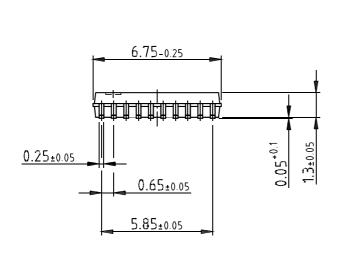
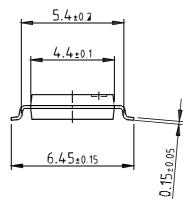
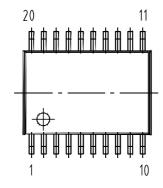



Figure 8-2. Application Circuit with DC-coupled Baseband Inputs






9. Ordering Information

Extended Type Number	Package	Remarks
U2793B-NFSH	SSO20	Tube, lead free
U2793B-NFSG3H	SSO20	Taped and reeled, lead free

10. Package Information

Package: SSO 20 Dimensions in mm

technical drawings according to DIN specifications

Drawing-No.: 6.543-5056.01-4

Issue: 1; 10.03.04

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

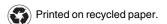
Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123


38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel[®], logo and combinations thereof, and other, are registered trademarks, and Everywhere You AreSM and others are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

