: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- Supply-voltage Range: 2.7 V to 5.5 V
- Single-ended Output, no Balun Required
- Single-ended Input for RF and LO
- Excellent Isolation Characteristics
- Power-down Mode
- IP3 and Compression Point Programmable
- 2.5-GHz Operating Frequency

Benefits

- Reduced System Costs as only Few External Component (no Balun) are Required
- Small Package
- Very Low Current Consumption
- Easy to Use

Electrostatic sensitive device.
Observe precautions for handling.

$2.5-\mathrm{GHz}$

Description

The U2795B is a $2.5-\mathrm{GHz}$ mixer for WLAN and RF telecommunications equipment, e.g., DECT and PCN. The IC is manufactured using Atmel's advanced bipolar technology. A double-balanced approach was chosen to assure good isolation characteristics and a minimum of spurious products. The input and output are single-ended, and their characteristics are programmable. No output transformer or balun is required.

Figure 1. Block Diagram

Pin Configuration

Figure 2．Pinning

Pin Description

Pin	Symbol	Function
1	VS	Supply voltage
2	RFI	RF input
3	P	Programming port IP3，CP
4	SO	Output symmetry
5	IFO	IF output
6	GND	Ground
7	LOI	LO input
8	PU	Power－up

Functional Description

Supply Voltage

Input Impedance

3rd Order Intercept Point (IP3)

The IC is designed for a supply-voltage range of 2.7 V to 5.5 V . As the IC is internally stabilized, the performance of the circuit is nearly independent of the supply voltage.

The input impedance, Z_{RF}, is about 700Ω with an additional capacitive component. This condition provides the best noise figure in combination with a matching network.

The voltage divider, R_{P} / R_{1}, determinates both the input and output intercept point, IIP3 and OIP3. If the value of R_{p} is infinite, the maximum value of IIP3 reach about -4 dBm . The IP3/R R_{P} characteristics are shown in Figure 3 and Figure 4.

Output Impedance and Intercept Point

The output impedance is shown in Figure 11 on page 8. Both low output impedance and a high intercept point are defined to a high value of R_{P}.

Current Consumption, I_{s}

Power-up

Output Symmetry

Depending on the chosen input and output conditions of the IC, the current consumption, I_{S}, is between 4 mA and 10 mA . The current consumption in dependence of R_{P} is shown in Figure 6 on page 6.

This feature provides extended battery lifetime. If this function is not used, pin 8 has to be connected to $\mathrm{V}_{\mathrm{S}}(\operatorname{pin} 1)$.

The symmetry of the load current can be matched and thus optimized for a given load impedance.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	6	V
Input voltage	V_{I}	0 to V_{S}	V
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Storage-temperature range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SO8	$\mathrm{R}_{\mathrm{thJA}}$	175	K/W

Operating Range

Parameters	Symbol	Value	Unit
Supply-voltage range	V_{S}	2.7 to 5.5	V
Ambient-temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{LOi}}=1 \mathrm{GHz}$, IF $=900 \mathrm{MHz}, \mathrm{RF}=100 \mathrm{MHz}, \mathrm{R}_{\mathrm{P}}=\infty$, system impedance $\mathrm{Zo}=50 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{T}}=56 \Omega$
reference point pin 6, unless otherwise specified

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*	
1.1	Supply voltage range		1	$\mathrm{V}_{\text {S }}$	2.7		5.5	V	A	
1.2	Supply Current	$\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=10 \mathrm{k} \Omega$	1	$\mathrm{I}_{\text {S }}$	9		13	mA	A	
		$\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{P}}=\infty$	1	I_{S}	3		6.2	mA	A	
1.3	Conversion Power Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{R}_{\mathrm{T}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{R}_{\mathrm{T}}=56 \Omega \end{aligned}$	1	$\begin{aligned} & \mathrm{PG}_{\mathrm{C}} \\ & \mathrm{PG}_{\mathrm{C}} \end{aligned}$		$\begin{aligned} & 9 \\ & 4 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	B	
2	Operating Frequencies									
2.1	RF ${ }_{\text {i }}$ frequency		2	RF_{i}	10		2500	MHz	D	
2.2	LO_{i} frequency		7	$\mathrm{f}_{\text {LOi }}$	50		2500	MHz	D	
2.3	$1 F_{0}$ frequency		5	$\mathrm{f}_{\text {IFo }}$	50		2500	MHz	D	
3	Isolation									
3.1	LO spurious at $\mathrm{R}_{\text {Fi }}$	$P_{\text {iLO }}=-10$ to 0 dBm	7, 2	$\mathrm{IS}_{\text {LO-RF }}$		-30		dBm	D	
3.2	RF_{i} to LO_{i}	$\mathrm{P}_{\mathrm{iRF}}=-25 \mathrm{dBm}$	2,7	$\mathrm{IS}_{\text {RF-LO }}$		35		dB	D	
3.3	LO spurious at $\mathrm{IF}_{\text {。 }}$	$P_{\text {iLO }}=-10$ to 0 dBm	5,7	$\mathrm{IS}_{\text {LO-IF }}$		-25		dBm	D	
3.4	IF_{0} to LO_{i}		5,7	$\mathrm{IS}_{\text {IF-LO }}$		30		dB	D	
4	Output (IF)									
4.1	Output compression point		5	CP_{0}		-10		dBm	D	
5	Input (RF)									
5.1	Input impedance		2	$\mathrm{Z}_{\mathrm{RFi}}$		700\|	0.8		$\Omega \mid \mathrm{pF}$	D
5.2	Input compression point		2	CP_{i}		-14		dBm	D	
5.3	3rd-order input intercept point		2	IIP3		-4		dBm	D	
6	Input (LO)									
6.1	LO level		7	$\mathrm{P}_{\text {iLO }}$		-6		dBm	D	
7	Voltage Standing Wave Ratio (VSWR)									
7.1	Input LO		7	$\mathrm{VSWR}_{\text {LOi }}$		<2			D	
7.2	Output IF		4	$\mathrm{VSWR}_{\text {IFo }}$		<2			D	
8	Noise Performance									
8.1	Noise figure	$\mathrm{P}_{\mathrm{iLO}}=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{T}}=\infty$		NF		10		dB	D	
9	Power-down Mode									
9.1	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{PU}}<0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{PU}}=0 \mathrm{~V} \end{aligned}$	1	$\mathrm{I}_{\text {SPU }}$		<5	30	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline B \\ & B \end{aligned}$	
10	Power-down Voltage									
10.1	"Power ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=2.7 \text { to } 3.5 \mathrm{~V} \end{aligned}$	8	$\mathrm{V}_{\text {PON }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}-0.5 \\ \mathrm{~V}_{\mathrm{S}} \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}+0.5 \\ & \mathrm{~V}_{\mathrm{S}}+0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	
10.2	"Power DOWN"		8	$\mathrm{V}_{\text {PDN }}$			1	V	D	
10.3	Power-down current	Power ON Power DOWN	8	$I_{\text {PON }}$ IPDN		$\begin{gathered} 0.15 \\ <5 \end{gathered}$	0.22	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { D } \end{aligned}$	
10.4	Settling time		5,8	$\mathrm{t}_{\text {sPD }}$		< 30		$\mu \mathrm{s}$	D	

${ }^{*}$) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter

Figure 3. IIP3 versus Resistor R_{p}, IF: 900 MHz

Figure 4. OIP3 versus Resistor R_{p}, IF: 900 MHz

Figure 5. Gain versus Resistor R_{p}, LO: 1030 MHz , level -10 dBm ; RF: 130 MHz , $-30 \mathrm{dBm}, \mathrm{R}_{\mathrm{T}}=56 \Omega$

Figure 6. Supply Current I_{S} versus Resistor R_{p}

Figure 7. Gain versus IF Output Frequency, LO Level: -6 dBm, RF: $130 \mathrm{MHz},-35 \mathrm{dBm}$; Parameter: RF Input Termination

Figure 8. IIP3 versus IF Output Frequency, LO Level: -6 dBm; RF: $130 \mathrm{MHz} /$ $130.1 \mathrm{MHz},-35 \mathrm{dBm}$; Parameter: RF Input Termination

Figure 9. Double Sideband Noise Figure versus IF Output Frequency; LO: 1000 MHz, Level 0 dBm ; no RF Input Matching, R_{T} Left Out

Figure 10. Typical VSWR Frequency Response of the IF Output, $\mathrm{R}_{\mathrm{P}}=\infty$

Figure 11. Typical Impedance of the Output versus R_{P} at Frequency $f_{I F o}=900 \mathrm{MHz}$ Markers (from Left to Right): $R_{p}=\propto / 22 \mathrm{k} \Omega / 10 \mathrm{k} \Omega / 8.2 \mathrm{k} \Omega / 5.6 \mathrm{k} \Omega$

Figure 12. Typical S11 Frequency Response of the IF Output, $\mathrm{R}_{\mathrm{P}}=\infty$, IF Frequency from 100 MHz to 1000 MHz , Marker: 900 MHz

Figure 13. Typical S11 Frequency Response of the RF Input, $R_{P}=\infty, R_{T}=\infty$ RF Frequency from 100 MHz to 1000 MHz , Marker: 900 MHz

Figure 14. Typical S11 Frequency Response of the LO Input, $R_{P}=\infty$, LO Frequency from 100 MHz to 1000 MHz , Marker: 900 MHz

Application

Table 1. Part List

Part	Value
C_{1}	10 nF
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}$	100 pF
${ }^{*} \mathrm{R}_{\mathrm{P}}$	
${ }^{*} \mathrm{R}_{\mathrm{SO}}$	$50-\Omega$ Microstrip
$--\infty$	68Ω
R_{T}	optional

If the part-list values are used, the PU settling time is < $20 \mu \mathrm{~s}$. Using other values, time requirements in burst-mode applications have to be considered.
The values of $R_{S O}$ and R_{P} depend on the input and output condition requirements. For $R_{\text {SO }}, 68 \Omega$ is recommended.

By means of the optional R_{1}, the intercept and compression point can be slightly increased; values between 500Ω and $1 \mathrm{k} \Omega$ are suitable. Please note that such modification will also increase the supply current.

Application Circuit (Evaluation Board)

Ordering Information

Extended Type Number	Package	Remarks
U2795B-MFP	SO8	Tube
U2795B-MFPG3	SO8	Taped and reeled

Package Information

technical drawings according to DIN specifications

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
\section*{Asia}
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
\section*{Japan}
9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved.

Atmel ${ }^{\circledR}$ and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be the trademarks of others.

