: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Features

- All Functions and Channel Selections are Controlled by Serial Bus

RF Part

- All Oscillators and PLL Integrated
- IF Converter
- FM Demodulator
- RSSI

Low Frequency Part

- Asymmetrical Input of Microphone Amplifier
- Asymmetrical Output of Earpiece Amplifier
- Compander
- Power Supply Management
- Serial Bus

Application

- CTO Standard
- Narrowband Voice and Data Transmitting/Receiving Systems

1. Description

The programmable single-chip multichannel cordless phone IC includes all necessary low frequency parts such as microphone- and earphone amplifier, compander, powersupply management as well as all RF parts such as IF converter, FM demodulator, RSSI, oscillators and PLL. Several gains and mutes in transmit and receive direction are controlled by the serial bus. The compander can be bypassed.

Figure 1-1. Block Diagram

2. Pin Configuration

Figure 2-1. Pinning SSO44

PCLO	1		LO1
RFOGND	2	43	LO2
RFO	3	42	GNDLO
RFOVB	4	41	MIX1IN2
AGND	5	40	MIX1IN1
VBIAS	6	39	MIX1O
VRF	7	38	OSCGND
MLF	8	37	XCK
LFGND	9	36	VAF
MODIN	10	35	MIX2O
VDD	11	34	MIX2GND
VSS	12	33	MIX2IN
D	13	32	IFIN1
C	14	31	IFIN2
DACO	15	30	ETC
OPOUT	16	29	EXIN
OPIN	17	28	RECO1
TXO	18	27	RECO2
LIMIN	19	26	RXO
COUT	20	25	DAIN
CTC	21	24	MIC
COIN	22	23	MICO

Table 2-1. \quad Pin Description

Pin	Symbol	Function
1	PCLO	Phase comparator local oscillator
2	RFOGND	RF transmit output ground
3	RFO	RF transmit output
4	RFOVB	Power supply input of RF transmit output buffer
5	AGND	Analog ground for RF part
6	VBIAS	Decoupling capacitor of current reference
7	VRF	Supply voltage for RF part
8	MLF	Modulator loop filter
9	LFGND	Modulator loop filter ground
10	MODIN	Modulator input
11	VDD	Supply voltage output for peripherals and internal supply of digital part
12	VSS	Ground for LF analog and digital
13	D	Data input of serial bus
14	C	Clock input of serial bus
15	DACO	D/A and data comparator output
16	OPOUT	Operational amplifier output
17	OPIN	Operational amplifier input (inverting)
18	TXO	Output of limiter amplifier
19	LIMIN	Limiter input
20	COUT	Compressor output
21	CTC	Compressor time constant control analog output
22	COIN	Compressor input
23	MICO	Microphone amplifier output
24	MIC	Inverting input of microphone amplifier
25	DAIN	Data comparator input
26	RXO	Output of demodulator
27	RECO2	
28	RECO1	Symmetrical output of receive amplifier
29	EXIN	Expander input
30	ETC	Expander time constant control analog output
31	IFIN2	
32	IFIN1	Symmetrical input of IF amplifier
33	MIX2IN	Input of Mixer2
34	MIX2GND	IF amplifier and Mixer2 ground
35	MIX2O	Mixer2 output
36	VAF	Supply voltage for AF/IF parts
37	XCK	Crystal oscillator input 11.15 MHz
38	OSCGND	Oscillator ground
39	MIX1O	Output of Mixer1
40	MIX1IN1	Symmetrical input of Mlxer1
41	MIX1IN2	Symmetrical input of Mixer1
42	GNDLO	Ground of LO
43	LO2	
44	LO1	Tank elements for LO are connected to these pins

4

3. System Description

Radio frequency IC for analog cordless telephone application in 26/50 MHz band (CTO standard). The IC performs full duplex communication. The transmitting and receiving frequency are depending on whether the IC is used in the handset or in the base station.

Frequency converter comprise an FM transmitter with switchable output power and first receiver mixer in the same unit. A two-wire bus interface can be used for the frequency control as well as for switching the transmitter power amplifier and the receiver. Fine frequency adjust of reference quartz oscillator is programmable.

The receive part is designed for a double conversion architecture. The incoming radio frequency signal will be filtered and amplified before reaching the first mixer. At this stage the RF signal will be converted down to the first intermediate frequency (10.7 MHz) by using a crystal oscillator (LO1).

The transmit part contains two PLL controlled VCOs. The frequency modulation is accomplished by super-posing the incoming audio signal on the PLL control voltage. Final frequency is a product of mixing VCO1 with first local oscillator of receiver part (VCO3). The FM modulated carrier is amplified by externals power amplifier before entering the output filter and the antenna connector.

3.1 Adjustments for VCO1 and VCO2

To be able to use a wide frequency range for the VCOs (i.e., VCO2 26.3 MHz to 49.9 MHz) the two internal VCOs (VCO1 and VCO2, i.e., the VCOs of the transmit part) have a rough adjust and a fine adjust to increase the frequency range given by the phase comparator.

The rough adjusts for these VCOs are correlated with the country setting. For every country there are two sets of VCO rough adjust settings, one for the base and one for the handset. See tables at channels frequencies and dividers.

To compensate the variation in production there is a fine adjust for each of the VCOs. The fine adjusts of the internal VCOs could be set manually (for test purposes) or set by the automatic mode. Theoretically the sign of the changing (increase/ decrease when the voltage of the phase comparator is to high) is selectable, but we need value 1 () in all cases.

Setting VCO1 (VCO2) under normal conditions:
EAFA1 $(E A F A 2)=1$, automatic fine adjust VCO1 $(\mathrm{VCO} 2)$ enabled SAFA1 $($ SAFA2 $)=1, \quad$ sign of auto fine adjustment of VCO1 $(\mathrm{VCO} 2)=1$.

3.2 Adjustment for VCO3

In order to increase the adjustment range of VCO3 with fixed external tank elements and/or for "band switching", especially for US frequencies, VCO3 has programmable capacitors inside. These capacitors can be added by serial bus (FA3 [4:0]) between LO1 and LO2. There are 31 steps available, every step adding a capacitor of 0.5 pF .

3.3 Speed-up of the Loop Filter of PLL1 ("Modulator PLL")

To have a fast locking time for the modulator loop there is a precharge and a speed-up mode for the external loop filter.

During receive mode (VCO3 enabled, VCO1 disabled) the modulator loop filter is precharged to about half of the internally regulated 2.5 V charge-pump voltage.

During the first 30 ms after enabling VCO1 the modulator phase comparator is in speed-up mode. In this mode the current of the pase comparator which charges the loop filter is much larger than in normal mode. Additionally to the automatically switched 30 ms speed-up mode, the speed-up can be activated for any time by setting the bit SU1.

3.4 Speed-up of the Loop Filter of PLL3 ("1st. LO.")

Similiar to PLL1, there is also a possibility to increase the locking speed of PLL3. This can be done by setting the bit SU3. Having done this, the charge pump at the output of the phase comparator has a bigger current capability and therefore charges the external capacitors faster.

3.5 Adjustment of the Modulator Gain

To fulfil the different requirements of the different countries three conversion gains of the modulator are selectable by the bits GMOD [1:0] (R6: D2, D3).
Country settings see tables at channel frequencies and dividers. Ranges see electrical characteristics at RF transmitter.

3.6 Modulator PLL

The fractional divider has been chosen to increase the reference frequency of the modulator PLL.
$557.5 \mathrm{kHz}=\mathrm{f}_{\mathrm{Mod}}{ }^{\prime}\left(\mathrm{P}_{1}+\frac{\mathrm{Q}_{1}}{223}\right)$
P_{1} : integer part of the fractional divider $(M=1)$
Q_{1} : fractional part of the fractional divider $(M=1)$
$Q_{1}=223 \times\left(\frac{f_{\mathrm{Mod}}}{557.5 \mathrm{kHz}}-\mathrm{P}_{1}\right)$
$223=\frac{557.5 \mathrm{kHz}}{2.5 \mathrm{kHz}}$
The frequency step 2.5 kHz is a fraction of the reference frequency 557.5 kHz . In fact, the fractional divider divides Q_{1} times by $\left(P_{1}+1\right)$ and $\left(223-Q_{1}\right)$ times by P_{1} during 223 cycles.

$$
\rightarrow \frac{Q_{1} \times\left(P_{1}+1\right)+\left(223-Q_{1}\right) P_{1}}{223}=P_{1}+\frac{Q_{1}}{223}
$$

For each comparison cycle ($\mathrm{f}_{\text {Ref1 }}=557.5 \mathrm{kHz}$), the accumulator content is incremented by the Q_{1} value and the divider divides by the P_{1} value. When the accumulator value reaches or exceeds 223, the divider divides by the value ($P_{1}+1$). Then, the accumulator holds the excess value (accumulator value-223). After 223 cycles, the correct division is executed.

3.7 Serial Bus Interface

The circuit is remoted by an external microcontroller through the serial bus.
The data is a 12 -bit word:
A0-A3: address of the destination register (0 to 15)
D7 - D0: contents of register
The data line must be stable when the clock is high and data must be serially shifted.
After 12 clock periods, the transfer to the destination register is (internally) generated by a low to high transition of the data line when the clock is high.

Figure 3-1. Serial Bus

Figure 3-2. Serial Bus Transmission

Figure 3-3. Serial Bus Structure

Figure 3-4. Serial Bus Timing Diagram

3.8 Content of Internal Registers

The registers have the following structure

D7	D6	D5	D4	D3	D2	D1	D0

RO: Reference for D/A converter

MUXDA	DA6	DA5	DA4	DA3	DA2	DA1	DA0

MUXDA: D/A multiplexing VBAT/RSSI
DA(0:6): Reference voltage D/A
R1: Gain of earpeace amplifier and demodulator

GEA4	GEA3	GEA2	GEA1	GEA0	GDEM	free	free

GEA[0:4]: Gain of earpeace amplifier; " 0 " is LSB, " 4 " is MSB
GDEM: Demodulator gain (1 = low gain)
R2: Switches and mutes for receive and data reception

DATRX	BEXP	EEA	ERXO	ERX1	ERXHF	MRX	ERX2

DATRX: Switch data comparator output to "DACO"-pin
BEXP: Bypass expander
EEA: Enable earpiece amplifier
ERXO: Enable RXO output driver
ERX1: Enable RX low frequency part 1
ERXHF: Enable Mixer2 and IF-amplifier
MRX: Mute RX low frequency path (expander) keeping circuit enabled
ERX2: Enable RX low frequency part 2 (expander)

R3: Switches and mutes for transmit and power managemant

PDVDD	RBAT	free	free	free	free	MTX	ETX

PDVDD: Enable pull-down transistor in power-down mode
RBAT: Battery detection high/low range
MTX: Mute TX low frequency path (compressor) keeping circuit enabled
ETX: Enable TX low frequency part
R4: free (not used, for future extensions)

| free |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

R5: Gain VCO2

free	free	KV23	KV22	KV21	M12	free	free

KV2[1:3]: Gain of VCO2
M12: Double phase comparator frequency of PLL2

R6: Miscellaneus settings in synthesizer part

ETXO	M1CP	FRMT	IMIXI	GMOD1	GMOD0	SU1	(TM)

ETXO: Enable HF-transmit output
M1CP: Changes 1 dB compression point and current consumption of Mixer1 ("0" -> high, "1" -> low)
FRMT: Output frequency range of MixerT
IMIXI: Invert inputs of phase comparator in PLL2
GMOD[0:1]: Modulation gain of VCO1
SU1: \quad Speed-up phase comparator for PLL1
(TM): Enable the internal test mode. It is mandatory that TM is kept to "0"! (if not 0 , the circuit will not work as expected or described here in this paper)

R7: PLL1 setting

DR111	DR110	RA11	RA10	DV1I3	DV112	DV111	DV110

DR1I[0:1]: Additional divider reference frequency PLL1
RA1[0:1]: Rough adjustment VCO1
DV1I[0:3]: Divider setting PLL1 integer part; "0" is LSB, " 3 " is MSB

R8: Divider PLL1 fractional part

DV1F7	DV1F6	DV1F5	DV1F4	DV1F3	DV1F2	DV1F1	DV1F0

DV1F[0:7]: Divider setting PLL1 fractional part; " 0 " is LSB, " 7 " is MSB

R9: Divider PLL3 LSBs

DV317	DV316	DV315	DV314	DV313	DV312	DV311	DV310

R10: Divider PLL3 MSBs and MSB of VCO3 fine adjustment

FA34	DV3I14	DV3I13	DV3I12	DV3I11	DV3I10	DV319	DV318

FA34: Fine adjustment VCO3 (frequency reduction) MSB
DV1I[0:14]: Divider setting PLL3 integer part; "0" is LSB, " 14 " is MSB

R11: Setting PLL2 and VCO3

FA33	FA32	FA31	FA30	AMIX2	AMIX1	RA21	RA20

FA3[0:4]: Fine adjustment of VCO3 (frequency reduction); "0" is LSB, "4" is MSB
AMIX[1:2]: Lengthening antibacklash signal PLL2
RA2[1:0]: Rough adjustment VCO2

R12: Divider for country setting, fine adjustment oscillator

FAOS2	FAOS1	FAOS0	D31	D30	D20	D11	D10

FAOS[0:2]: Fine adjustment of crystal oscillator (frequency reduction); " 0 " is LSB, " 2 " is MSB
D3[0:1]: Setting divider D3
D20: \quad Setting divider D2
D1[0:1]: Setting divider D1

R13: VCO1 enable and fine adjustment

EVCO1	SAFA1	EAFA1	FA14	FA13	FA12	FA11	FA10

EVCO1: Enable VCO1
SAFA1: \quad Sign for automatic fine adjustment of VCO1
EAFA1: Enable automatic fine adjustment of VCO1
FA1(0:4): Manual fine adjustment of VCO1 (frequency reduction); " 0 " is LSB, " 4 " is MSB

R14: VCO2 enable and fine adjustment

EVCO2	SAFA2	EAFA2	FA24	FA23	FA22	FA21	FA20

EVCO2: Enable VCO2 and MixerT
SAFA2: \quad Sign for automatic fine adjustment of VCO2
EAFA2: Enable automatic fine adjustment of VCO2
FA2(0:4): Manual fine adjustment of VCO2 (frtequency reduction); " 0 " is LSB, " 4 " is MSB

R15: VCO3 enable, speed-up and referencq frequency, crystal oscillator enable

EVCO3	EOSC	SU3	E25K	E12K5	E10K	E6K25	E5K

EVCO3: Enable VCO3 and Mixer1
EOSC: Enable crystal oscillator (11.15 MHz)
SU3: \quad Speed-up phase comparator for PLL3
E25K: \quad Selection phase comparator frequency for PLL3: $\mathrm{f}_{\text {Ref3 }}=25 \mathrm{kHz}$
E12K5: Selection phase comparator frequency for PLL3: $\mathrm{f}_{\text {Ref3 }}=12.5 \mathrm{kHz}$
E10K: \quad Selection phase comparator frequency for PLL3: $\mathrm{f}_{\text {Ref } 3}=10 \mathrm{kHz}$
E6K25: Selection phase comparator frequency for PLL3: $\mathrm{f}_{\text {Ref3 }}=6.25 \mathrm{kHz}$
E5K: \quad Selection phase comparator frequency for PLL3: $\mathrm{f}_{\text {Ref } 3}=5 \mathrm{kHz}$
E5K, E6K25, E10K, E15K5, E25K = 0:
Selection phase comparator frequency for PLL3: $\mathrm{f}_{\text {Ref3 }}=2.5 \mathrm{kHz}$

4. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	$\mathrm{V}_{\text {Batt }}, \mathrm{V}_{\mathrm{DD}}$	5.5	V
Junction temperature	T_{j}	+125	${ }^{\circ} \mathrm{C}$
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-50 to +125	${ }^{\circ} \mathrm{C}$
Power dissipation $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	0.9	W

5. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SSO44	$\mathrm{R}_{\text {thJA }}$	70	K/W

6. Electrical Characteristics

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{VRF}=\mathrm{VAF}=$ RFOVB $=3.6 \mathrm{~V}$, all bits set to " 0 ", unless otherwise specified.
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table "Crystal Specifications".

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Power Supply						
Operating voltage range			3.1	3.6	5.2	V
Current Consumption						
Operating current in inactive mode (low voltage)	$\begin{aligned} & \mathrm{VRF}=\mathrm{VAF}=\mathrm{RFOVB}=2.9 \mathrm{~V} \\ & \mathrm{VDD}=0 \mathrm{~V} \end{aligned}$		30	65	85	$\mu \mathrm{A}$
Operating current in standby mode	$\mathrm{VRF}=\mathrm{VAF}=\mathrm{RFOVB}=3.6 \mathrm{~V}$		30	100	350	$\mu \mathrm{A}$
Operating current in RX mode "waiting for RSSI"	$\mathrm{ERXHF}=\mathrm{EVCO} 3=\mathrm{EOSC}=1$			7.5	10.4	mA
Operating current in RX mode "receiving data"	$\begin{aligned} & \mathrm{ERXHF}=\mathrm{EVCO}=\mathrm{EOSC}=\mathrm{ERX} 1 \\ & =\mathrm{ERXO}=1 \end{aligned}$			8.5	11.5	mA
Operating current in conversation mode: all blocks enabled	$\begin{aligned} & \mathrm{ERXHF}=\mathrm{EVCO}=\mathrm{EOSC}=\mathrm{ERX} 1=\mathrm{ERXO} \\ & =\mathrm{ERX} 2=\mathrm{EEA}=\mathrm{EVCO} 2=\mathrm{ETXO}=1 \\ & \text { no load at RFO pin } 3 \end{aligned}$			20	29	mA
Charge Pump of LL1						
Charge pump output voltage	Output high		2.38	2.5	2.63	V
Precharge voltage at the loop filter	SB127 $=1$, SB119 $=0$		1.15	1.4	1.65	V
Charge pump output current in speed-up mode	VMLF $=1.25 \mathrm{~V}$, output low		190		400	$\mu \mathrm{A}$
	VMLF $=1.25 \mathrm{~V}$, output high		-400		-190	$\mu \mathrm{A}$
Charge pump output current	VMLF $=1.25 \mathrm{~V}$, output low		4.3	6.2	8	$\mu \mathrm{A}$
	VMLF $=1.25 \mathrm{~V}$, output high		-8	-6.2	-4.3	$\mu \mathrm{A}$
Charge pump leakage current	VMLF $=1.25 \mathrm{~V}$, output tristate		-150		+150	nA
Charge Pump of PLL3						
Charge pump output voltage	Output high		2.38	2.5	2.63	V
Charge pump output current in speed-up mode	VPCLO $=1.25 \mathrm{~V}$, output low		220		420	$\mu \mathrm{A}$
	VPCLO $=1.25 \mathrm{~V}$, output high		-420		-220	$\mu \mathrm{A}$
Charge pump output current	$\mathrm{VPCLO}=1.25 \mathrm{~V}$, output low		80		160	$\mu \mathrm{A}$
	VPCLO $=1.25 \mathrm{~V}$, output high		-160		-80	$\mu \mathrm{A}$
Charge pump leakage current	VPCLO $=1.25 \mathrm{~V}$, output tristate		-50		+50	nA
Receiver Input Mixer (Mixer1), EVCO3 = EOSC = 1						
Input frequency range			20		50	MHz
Output frequency				10.7		MHz
Input resistance	MIX1IN1/MIX1IN2 to GND			3.0		$\mathrm{k} \Omega$
Input capacitance	MIX1IN1/MIX1IN2 to GND			3.5		pF
Output impedance	MIX1O		210	330	390	Ω
Voltage gain	MIX1IN1/2 -> MIX1O "Loaded" (330 Ω with serial capacitance) "Unloaded"			$\begin{aligned} & 11.5 \\ & 17.5 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input noise voltage				9		$\mathrm{nV} \mathrm{Hz}{ }^{-1 / 2}$

6. Electrical Characteristics (Continued)

$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}, \mathrm{VRF}=\mathrm{VAF}=$ RFOVB $=3.6 \mathrm{~V}$, all bits set to " 0 ", unless otherwise specified.
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table "Crystal Specifications".

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Input 1-dB compression point	"Loaded" (330Ω with serial capacitance) M1CP=0 M1CP=1 "unloaded" $\mathrm{M} 1 \mathrm{CP}=1$			$\begin{array}{r} 140 \\ 40 \\ \\ 100 \end{array}$		mV mV mV
Third order input intercept point	"Loaded" (330Ω with seial capacitance) M1CP=0			430		mV
IF Mixer (Mixer2), EOSC = ERXHF = 1; Input Frequency: 10.7 MHz						
Input resistance	MIX2IN to GND		2.0	3.0	4.0	$k \Omega$
Input capacitance	MIX2IN to GND		2.5	3	3.5	pF
Output impedance	MIX2O		1200	1500	1800	Ω
Voltage gain	$\begin{aligned} & \text { MIX2IN -> MIX2O } \\ & \text { "Loaded" (1500 } \text { with serial capacitance) } \end{aligned}$		13	15	17	dB
Input 1-dB compression point	"Loaded" (1500Ω with serial capacitance)		32			mV
Third order input intercept point	"Loaded" (1500 2 with serial capcitance)		80			mV

IF Amplifier and Demodulator, ERXHF=1, ERX1=1, ERXO=1; Input Signal: $450 \mathrm{kHz}, 500 \mu \mathrm{~V}, \mathrm{FM}$-modulation Frequency = $1 \mathbf{k H z}$

| Recovered audio at RXO,
 demodulator gain | GDEM=0
 GDEM $=1$ | | 180
 90 | $\mathrm{mV} / \mathrm{kHz}$ |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{mV} / \mathrm{kHz}$ | | | | |$|$


```Gain reference level = G.R.L. (gain = 0 dB)```		70	80	90	mVrms
Gain versus input signal level ("gain tracking")	$\begin{aligned} & \text { VEXIN }=10 \mathrm{~dB} \text { less than G.R.L. } \\ & \text { VEXIN }=20 \mathrm{~dB} \text { less than G.R.L. } \\ & \text { VEXIN }=30 \mathrm{~dB} \text { less than G.R.L. } \end{aligned}$	$\begin{aligned} & -11 \\ & -21 \\ & -35 \end{aligned}$	$\begin{aligned} & -10 \\ & -20 \\ & -30 \end{aligned}$	$\begin{gathered} -9 \\ -19 \\ -25 \end{gathered}$	dB   dB   dB
Attack time	$\text { VEXIN = step } 25 \mathrm{mV} \rightarrow 50 \mathrm{mV}$ measure time after step, when output voltage has 0.75 times of final value		16		ms
Release time	$\text { VEXIN = step } 50 \mathrm{mV} \rightarrow 25 \mathrm{mV}$ measure time after step, when output voltage has 1.5 times of final value		16		ms
Input resistance		9.5		15	$\mathrm{k} \Omega$


Earpiece Amplifier, EEA = 1, ERX2 = 1, BEXP = 1; Apply Input Voltage to EXIN; Measure Differentially at RECO1/2						
Minimum gain	GEA[4:0]=0	0	1	2	dB	
Medium gain	GEA[4:0]=16		16	17	18	dB
Maximum gain	GEA[4:0]=31		31	32	33	dB
Gain adjust step		0.8	1	1.2	dB	
Output voltage swing	Maximum gain; $1 \mathrm{k} \Omega$ load; increase input   voltage until distortion $\approx 5 \%$		4.8	5		Vpp
Input resistance		7.3		12.5	$\mathrm{k} \Omega$	

## 6. Electrical Characteristics (Continued)

$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}, \mathrm{VRF}=\mathrm{VAF}=$ RFOVB $=3.6 \mathrm{~V}$, all bits set to " 0 ", unless otherwise specified.
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table "Crystal Specifications".

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
IF Amplifier: RSSI						
Input frequency	ERXHF=1			450		kHz
Input resistance			1.6	2.0	2.5	$\mathrm{k} \Omega$
RSSI sensitivity	$\mathrm{VIF}=0 \mu \mathrm{~V}$   starting from 0 increase RSSI-level until mean of sampled signal at DACO is $\geq 0.5$. RSSI-level = IONO $\mathrm{VIF}=25.4 \mu \mathrm{~V}, \mathrm{f}=450 \mathrm{kHz}$   increase RSSI level again until mean of sampled signal at DACO is $\geq 0.5$.   RSSI-level = ION1   RSSI-sensitivity $=$ ION1-IONO			1		
RSSI input voltage dynamic range				65		dB
RSSI level number of programmable steps (see folowing table "RSSI Level Programming (Typical Values)				127		dB
RSSI level step size in the logarithmic region			0.35	0.46	0.6	dB

Table 6-1. $\quad$ RSSI Level Programming (Typical Values)

Input Voltage VIF $(\boldsymbol{\mu V})$	RSSI Level (Decimal)
0	5
25.4	8
42.4	14
424	54
4240	97
42400	111

## 7. Electrical Characteristics

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{VRF}=\mathrm{VAF}=\mathrm{RFOVB}=3.6 \mathrm{~V}$, all bits set to " 0 ", unless otherwise specified. Test circuit, see Figure 8-1 on page 18.

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Data Comparator, ERX1 = DATRX = 1						
Hysteresis				50		mV
Threshold voltage				1.5		V
Input impedance	DAIN			100		$\mathrm{k} \Omega$
Output high voltage	DACO, without load (CMOS-output $->$ full swing)			3.5		V
Output low voltage	DACO, without load (CMOS-output -> full swing)			0.1		V
Output impedance	DACO			6		k $\Omega$
Battery Switch						
"Off" threshold	Decrease VBAT until internal switch between VBAT and VDD becomes high ohmic ("off")		2.85	2.95	3.1	V
"On" threshold	Increase VBAT until internal switch between VBAT and VDD becomes low ohmic ("on")		3.1	3.2	3.35	V
Hysteresis	Difference between on and off threshold			250		mV
"Off"-leakage current					10	$\mu \mathrm{A}$
Switch "On"-resistance					50	$\Omega$

Battery Management, MUXDA = 1

Maximum bat low	$\mathrm{DA}[6: 0]=127$, RBAT $=1$		3.7	3.95	4.1	V
Minimum bat low over switch	$\mathrm{DA}[6: 0]=27$, RBAT $=1$		3.05	3.2	3.35	V
Maximum bat high	$\mathrm{DA}[6: 0]=127$, RBAT $=0$		4.75	5.05	5.25	V
Minimum bat high	$\mathrm{DA}[6: 0]=0$, RBAT $=0$		3.83	4.1	4.27	V
Adjust step			3.5	7.5	11.5	mV
Maximum - Minimum			852.5	952.5	1052.5	mV

Microphone Amplifier, ETX=1

Open loop gain				80		dB
Gain bandwidth product				3		MHz
Input noise voltage,   $\mathrm{BW}=300 \mathrm{~Hz}$ to 3.4 kHz,   psophometrically weighted				0.8	2	$\mu \mathrm{Vrmsp}$

Compressor, ETX = 1; 470 nF from CTC to GND (VSS)
Gain reference level = G.R.L. (gain $=0 \mathrm{~dB}$ )

Gain versus input signal level ("gain tracking")

Attack time

		298	316	340	mVrms
VCOIN $=20 \mathrm{~dB}$ less than G.R.L.		9	10	11	
VCOIN $=40 \mathrm{~dB}$ less than G.R.L.		19	20	21	dB
VCOIN $=50 \mathrm{~dB}$ less than G.R.L.		22	25	28	
VCOIN $=60 \mathrm{~dB}$ less than G.R.L					
VCOIN $=$ step $31.6 \mathrm{mV}->126 \mathrm{mV}$,		3.5		ms	
$(-30 \mathrm{dBV} \rightarrow-18 \mathrm{dBV})$					
measure time after step, when output					
voltage has 1.5 times of final value					

## 7. Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{VRF}=\mathrm{VAF}=\mathrm{RFOVB}=3.6 \mathrm{~V}$, all bits set to " 0 ", unless otherwise specified. Test circuit, see Figure 8-1 on page 18.

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Release time	$\begin{aligned} & \text { VCOIN = step } 126 \mathrm{mV} \rightarrow 31.6 \mathrm{mV} \\ & (-18 \mathrm{dBV} \rightarrow-30 \mathrm{dBV}) \end{aligned}$   measure time after step, when output voltage has 0.75 times of final value			14.4		ms
Input resistance			14	19.5	26	k $\Omega$
Splatter Amplifier, ETX = 1						
Open loop gain				90		dB
Gain bandwidth product				150		kHz
Maximum output voltage swing			2.4			Vpp
Limiter Amplifier, ETX $=1, \mathrm{~T}_{\mathrm{j}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$						
Gain for signals below limitation	LIMIN -> TXO, $20 \mathrm{mV}_{\text {RMS }}$ applied to LIMIN (AC coupled)			26		dB
Distortion for signals below limitation	LIMIN $\rightarrow>$ TXO, $20 \mathrm{mV}_{\text {RMS }}$ applied to LIMIN (AC coupled)				2	\%
Maximum output voltage swing (above limitation, clipping)			1.8	2.1	2.35	$\mathrm{V}_{\mathrm{pp}}$
Input resistance at LIMIN			15	20	25	$\mathrm{k} \Omega$

Note: The gain and maximum output voltage swing of the limiter amplifier changes with temperature to compensate the temperature dependancy of MODIN ("tx conversion gain" of RF transmit part), fundamentally determined by the structure of the circuitry.

MODIN input impedance		70	100	130	$\mathrm{k} \Omega$
RFO output impedance	Load = 200 ø	230	300	390	$\Omega$
RFO output voltage level	ETXO = 0; no load			0.3	V
Highest operating frequency	USA Base Channel 9 (US1b9)		$\begin{gathered} 49.99 \\ 00 \end{gathered}$		MHz
TX conversion gain MODIN - RFO	For the complete programming see "Channel Frequencies, Dividers and Country Settings" on page 20"   USA1:   GMOD[1:0] $=00 ; f$ Mod $=\sim 7.6 \mathrm{MHz}$   USA2:   GMOD[1:0] $=01 ; f$ Mod $=\sim 5.7 \mathrm{MHz}$   France:   GMOD $[1: 0]=01 ; \mathrm{fMod}=4.3 \mathrm{MHz}$   GMOD[1:0] = 00; $\mathrm{fMod}=4.3 \mathrm{MHz}$   Spain/Netherlands:   GMOD[1:0] = 10; $\mathrm{fMod}=1.8 \mathrm{MHz}$		5.2   5.2   3.8   2.7   7.9		kHz/V   kHz/V   kHz/V   kHz/V   kHz/V
Demodulated distortion THD MODIN - RFO	Modulation frequency: 1 kHz US: $\quad \Delta \mathrm{F}=4.0 \mathrm{kHz}$ France: $\Delta \mathrm{F}=2.5 \mathrm{kHz}$		1.5	5	\%

## 7. Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{VRF}=\mathrm{VAF}=\mathrm{RFOVB}=3.6 \mathrm{~V}$, all bits set to " 0 ", unless otherwise specified. Test circuit, see Figure 8-1 on page 18.

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Note: The tx conversion gain of the RF transmitter is somehow dependent on temperature. This is determined by the fundamental principle of this circuitry. Means have been taken inside the limiter amplifier, being in the signal path before MODIN, which are able to completely compensate this temperature behavior.						
Logical Part						
Inputs: C, D Low voltage input High voltage input   Input leakage current $(0<\mathrm{VI}<\mathrm{VDD})$		Vil   Vih   li	$\begin{gathered} 0.8 \times V_{D} \\ D \\ -1 \end{gathered}$		$\begin{gathered} 0.2 \times \mathrm{V}_{\mathrm{DD}} \\ +5 \end{gathered}$	$\mu \mathrm{A}$
Input leakage current Pin XCK ( 0 < VI < VDD)			-5		+5	$\mu \mathrm{A}$
Serial bus (Figure 8-2)   Data set-up time   Data hold time   Clock low time   Clock high time   Hold time before transfer   condition   Data low pulse on transfer condition   Data high pulse on transfer condition		tsud thd tcl tch teon teh teoff	$\begin{gathered} 0.1 \\ 0 \\ 2 \\ 2 \\ 0.1 \\ 0.2 \\ 0.2 \end{gathered}$			$\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$ $\mu \mathrm{s}$   $\mu \mathrm{s}$   $\mu \mathrm{s}$

## 8. Fine Adjustment of the Oscillator Frequency

To set the frequency of the oscillator exact to 11.15 MHz , the frequency is adjustable in 8 steps, by adding 3 different internal capacities the frequency could be reduced.

Parameters	Test Conditions/Pins		Min.	Typ.	Max.	Unit
Oscillator frequency without reduction	FAOS (0:2) = 0			$\begin{gathered} 11.15 \\ +\Delta \end{gathered}$		MHz
Changing of oscillator frequency with FOSC reduction	$\begin{gathered} \text { FAOS2 } \\ 0 \\ 0 \\ 1 \\ 1 \end{gathered}$	FAOS1 FAOS0   0 1   1 0   0 0   0 1		$\begin{aligned} & 140 \\ & 280 \\ & 560 \\ & 700 \end{aligned}$		Hz

Figure 8-1. Test Circuit



## 9. Channel Frequencies, Dividers and Country Settings

To meet all requirements of various countries - France (F), Spain (E), Netherlands (NL), USA, Portugal (P), Taiwan, New Zealand and Korea - and modes - base (b), handset (h) - several bits have to be set which do not change for the different channels. These settings are called country settings.

- The country-setting bits contain:
- Rough adjustments for 2 VCOs
- Setting three integer divider in the mixer PLL and modulator PLL
- Conversion gain adjustment of mixer PLL
- Modulator gain
- Setting of the pulling direction of PLL2 (value dependent, if TX frequency is higher or lower than LO frequency)
- Demodulator gain

Name Register	Function	Notes	Number of Positions
RA1[1:0]	Rough adjust VCO1	00: is the highest frequency	3
RA2[1:0]	Rough adjust VCO2	00 : is the highest frequency	4
D1[1:0]	Integer divider D1	Division by $2,4,6,8$	4
D20	Integer divider D2	Division by 6, 8	2
M12	Integer divider M12	Doubles reference frequency of PLL2 when set to " 1 "	2
D3[1:0]	Integer divider D3	Division by 1, 2, 4	3
KV[3:1]	Conversion gain VCO2		6
GMOD[1:0]	Modulator gain	00: gain minimal	3
IMIXI	Reverse inputs of PC of PLL	0: if fVCO2 lower than fVCO3	2
DR1[1:0]	Additional divider M for reference frequency $\mathrm{f}_{\text {Ref1 }}$	"0" means no reduction, >0 only necessary in E, NL, Portugal	4
FRMT	Frequency range Mixer T	0: output frequency < 5 MHz	2
GDEM	Demodulator gain	0 : high gain   1: low gain	2

Note: Setting the fractional dividers:
For $\mathrm{N}, \mathrm{Q}_{\mathrm{M}}$, send the binary equivalent of the numbers given below.
For $P_{M}$ (integer part of modulator PLL), send the D2 complement ( $16-P_{M}$ )
i.e., Fb1 ( $P_{M}=7, Q_{M}=159$ => integer: send $16-P_{M}=9$, fractional: send 159)

## 10. Tables for Programming of the Dividers (Refer to Block Diagram)

Table 10-1. Divider D1 for PLL2

D11 (bit)	D10 (bit)	Decimally	D1 (Block Diagram),if M12 = 0	D1 (Block Diagram),if M12 $=\mathbf{1}$
0	0	0	2	1
0	1	1	8	4
1	0	2	6	3
1	1	3	4	2

Table 10-2. Divider D2 between PLL1 and PLL2

D20 (bit)	Decimally	D2 (Block Diagram),if M12 = 0	D2 (Block Diagram),if M12 $=\mathbf{1}$
0	0	6	3
0	1	8	4

Table 10-3. $\quad$ Divider D3 for PLL1

D31 (bit)	D30 (bit)	Decimally	D3 (Block Diagram)
0	0	0	1
0	1	1	2
1	0	2	6
1	1	3	4

### 10.1 Divider M for Reference Frequency of PLL1

There are several countries like Spain, the Netherlands and Portugal with relatively low modulator frequencies fMod. In case of modulation there will be a big maximum time shift between pulses coming from fractional divider and pulses coming from reference frequency divider. As a consequence the phase comparator enters an undesired operation mode. To avoid entering this operation mode the reference frequency $f_{\text {Ref1 }}$ has to be reduced by a factor M. Simultaneously, keeping $f_{\text {Mod }}$ constant, the factors of fractional dividers have to be changed as well.

The connection between the additional reference frequency divider $M$ and the factors $P_{M}$ and $Q_{M}$ of fractional divider is given below. The subscript $M$ denotes which value of $M$ refers to the factors $P_{M}$ and $Q_{M}$ of fractional divider. The formulas take into account that the numerator of the fraction $Q_{M} / 223$ must not exceed 223.
$P_{M}=P_{1} \times M+$ integer $(Q \times M / 223)$
$Q_{M}=Q_{1} \times M-223 \times \operatorname{integer}\left(Q_{1} \times M / 223\right)$

### 10.2 France Base

Table 10-4. Country Setting

Name	RA1[1:0]	RA2[1:0]	D1[1:0]	D20	D3[1:0]	KV2[3:1]	GMOD[1:0]	IMIXI	DR1I[1:0]	FRMT	GDEM
Setting	00	11	11	1	01	100	$01^{(1)}$	0	00	0	0
Value	$\max$	$\min$	D1 $=4$	D2 $=8$	D3 $=2$			supra	M $=1$	low	high   gain

Note: Alternatively, GMOD[1:0] could be set to "00". This reduces the TX conversion gain (MODIN $\rightarrow$ RFO) from about $3.8 \mathrm{kHz} / \mathrm{V}$ to about $2.7 \mathrm{kHz} / \mathrm{V}$, a value, which should be still sufficient for a maximum $\Delta \mathrm{f}$ of 2.5 kHz that is useful in the French case.

Table 10-5. $\quad$ Channel Frequencies and 1st LO Divider, $\mathrm{f}_{\text {Ref3 }}=6.25 \mathrm{kHz}$

Channel Number	$\begin{aligned} & \hline \text { TX Channel } \\ & \text { (MHz) } \end{aligned}$	Rx Channel Frequency (MHz)	$\begin{gathered} \mathrm{f}_{\mathrm{LO}}=1 / 2 \mathrm{f}_{\mathrm{vco3}} \\ (\mathrm{MHz}) \end{gathered}$	DV3I[14:0] = N
1	26.3125	41.3125	30.6125	4898
2	26.3250	41.3250	30.6250	4900
3	26.3375	41.3375	30.6375	4902
4	26.3500	41.3500	30.6500	4904
5	26.3625	41.3625	30.6625	4906
6	26.3750	41.3750	30.6750	4908
7	26.3875	41.3875	30.6875	4910
8	26.400	41.4000	30.7000	4912
9	26.4125	41.4125	30.7125	4914
10	26.4250	41.4250	30.7250	4916
11	26.4375	41.4375	30.7375	4918
12	26.4500	41.4500	30.7500	4920
13	26.4625	41.4625	30.7625	4922
14	26.4750	41.4750	30.7750	4924
15	26.4875	41.4875	30.7875	4926

### 10.2.1 France Modulation Loop Frequency and Divider

$f_{\text {Mod }}=4.3 \mathrm{MHz}, P_{M}=7, Q_{M}=159, M=1$

### 10.3 France Hand

Table 10-6. Country Setting

Name	RA1[1:0]	RA2[1:0]	D1[1:0]	D20	D3[1:0]	KV2[3:1]	GMOD[1:0]	IMIXI	DR1I[1:0]	FRMT	GDEM
Setting	00	01	11	1	01	101	$01^{(1)}$	1	00	0	0
Value	$\max$		D1 $=4$	D2 $=8$	D3 $=2$			infra	M =1	low	high   gain

Note: Alternatively, GMOD[1:0] could be set to "00". This reduces the TX conversion gain (MODIN $\rightarrow$ RFO) from about $3.8 \mathrm{kHz} / \mathrm{V}$ to about $2.7 \mathrm{kHz} / \mathrm{V}$, a value, which should be still sufficient for a maximum $\Delta \mathrm{f}$ of -2.5 kHz that is useful in the French case.

Table 10-7. $\quad$ Channel Frequencies and 1st LO Divider, $\mathrm{f}_{\text {Ref } 3}=6.25 \mathrm{kHz}$

Channel Number	TX Channel Frequency (MHz)	RX Channel Frequency (MHz)	$\begin{gathered} \mathrm{f}_{\mathrm{LO}}=1 / 2 \mathrm{f}_{\mathrm{VcO} 3} \\ (\mathrm{MHz}) \end{gathered}$	DV31[14:0] = N
1	41.3125	26.3125	37.0125	5922
2	41.3250	26.3250	37.0250	5924
3	41.3375	26.3375	37.0375	5926
4	41.3500	26.3500	37.0500	5928
5	41.3625	26.3625	37.0625	5930
6	41.3750	26.3750	37.0750	5932
7	41.3875	26.3875	37.0875	5934
8	41.4000	26.4000	37.1000	5936
9	41.4125	26.4125	37.1125	5938
10	41.4250	26.4250	37.1250	5940
11	41.4375	26.4375	37.1375	5942
12	41.4500	26.4500	37.1500	5944
13	41.4625	26.4625	37.1625	5946
14	41.4750	26.4750	37.1750	5948
15	41.4875	26.4875	37.1875	5950

### 10.3.1 France Modulation Loop Frequency and Divider

$$
f_{M o d}=4.3 \mathrm{MHz}, P_{M}=7, Q_{M}=159, M=1
$$

### 10.4 Spain Base

Table 10-8. Country Setting

Name	RA1[1:0]	RA2[1:0]	D1[1:0]	D20	D3[1:0]	KV2[3:1]	GMOD[1:0]	IMIXI	DR1[1:0]	FRMT	GDEM
Setting	10	10	00	1	11	001	10	1	11	1	1
Value			D1 $=2$	D2 $=8$	D3 $=4$			infra	$M=4$	high	low gain

Table 10-9. $\quad$ Channel Frequencies and 1st LO Divider, $\mathrm{f}_{\text {Ref3 }}=6.25 \mathrm{kHz}$

Channel   Number	TX Channel Frequency   $(\mathbf{M H z})$	RX Channel Frequency   $(\mathbf{M H z})$	$\mathbf{f}_{\text {Lo }}=\mathbf{1 / 2} \mathbf{f}_{\text {vco3 }}$   $(\mathbf{M H z})$	$\mathbf{D V 3 I [ 1 4 : \mathbf { 0 } ] = \mathbf { N }}$
1	31.025	39.925	29.225	4676
2	31.050	39.950	29.250	4680
3	31.075	39.975	29.275	4684
4	31.100	40.000	29.300	4688
5	31.125	40.025	29.325	4692
6	31.150	40.050	29.350	4696
7	31.175	40.075	29.375	4700
8	31.200	40.100	29.450	4704
9	31.250	40.150	29.475	4712
10	31.275	40.175	29.500	4716
12	31.300	40.200	29.525	4720

10.4.1 Spain Modulation Loop Frequency and Divider
$\mathrm{f}_{\text {Ref1 }}=557.5 \mathrm{kHz} / 4, \mathrm{f}_{\text {Mod }}=1.8 \mathrm{MHz} / 4, \mathrm{P}_{\mathrm{M}}=12, \mathrm{Q}_{\mathrm{M}}=204, \mathrm{M}=4$

### 10.5 Spain Hand

Table 10-10. Country Setting

Name	RA1[1:0]	RA2[1:0]	D1[1:0]	D20	D3[1:0]	KV2[3:1]	GMOD[1:0]	IMIXI	DR1I[1:0]	FRMT	GDEM
Setting	10	01	00	1	11	100	10	0	11	1	1
Value		high	D1 $=2$	D2 $=8$	D3 $=4$		high	supra	$M=4$	high	low gain

Table 10-11. Channel Frequencies and 1st LO Divider, $\mathrm{f}_{\text {Ref3 }}=6.25 \mathrm{kHz}$

Channel   Number	TX Channel Frequency   $(\mathbf{M H z})$	$\mathbf{R X}$ Channel Frequency   $(\mathbf{M H z})$	$\mathbf{f}_{\text {Lo }}=\mathbf{1 / 2} \mathbf{f}_{\text {vCO3 }}$   $(\mathbf{M H z})$	$\mathbf{D V 3 I [ 1 4 : 0 ] = \mathbf { N }}$
1	39.925	31.025	41.725	6676
2	39.950	31.050	41.750	6680
3	39.975	31.075	41.775	6684
4	40.000	31.100	41.800	6688
5	40.025	31.125	41.825	6692
6	40.050	31.150	41.850	6696
7	40.075	31.175	41.875	6700
8	40.100	31.200	41.900	6704
10	40.150	31.250	41.950	6712
11	40.175	31.275	41.975	6716
12	40.200	31.300	42.000	6720

10.5.1 Spain Modulation Loop Frequency and Divider
$\mathrm{f}_{\text {Ref1 }}=557.5 \mathrm{kHz} / 4, \mathrm{f}_{\text {Mod }}=1.8 \mathrm{MHz} / 4, \mathrm{P}_{\mathrm{M}}=12, \mathrm{Q}_{\mathrm{M}}=204, \mathrm{M}=4$

