imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- DC Characteristic Adjustable
- Transmit and Receive Gain Adjustable
- Symmetrical Input of Microphone Amplifier
- Anti-clipping in Transmit Direction
- Automatic Line-loss Compensation
- Symmetrical Output of Earpiece Amplifier
- Built-in Ear Protection
- DTMF and MUTE Input
- Adjustable Sidetone Suppression Independent of Sending and Receiving Amplification
- Speech Circuit with Two Sidetone Networks
- Built-in Line Detection Circuit
- Integrated Amplifier for Loud-hearing Operation
- Anti-clipping for Loudspeaker Amplifier
- Improved Acoustical Feedback Suppression
- Power Down
- Voice Switch
- Tone Ringer Interface with DC/DC Converter
- Zero Crossing Detection
- Common Speaker for Loud-hearing and Tone Ringer
- Supply Voltages for all Functional Blocks of a Subscriber Set
- Integrated Transistor for Short-circuiting the Line Voltage
- Answering Machine Interface
- Operation Possible from 10 mA Line Currents
- Filters against EMI on Critical I/O

Applications

- Feature Phone
- Answering Machine
- Fax Machine
- Speaker Phone

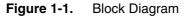
Benefits

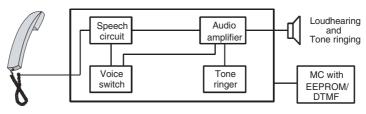
- Savings of One Piezoelectric Transducer
- Complete System Integration of Analog Signal Processing on One Chip
- Very Few External Components
- Fewer Components for EMI Protection

Monolithic Integrated Feature Phone Circuit EMI Improved

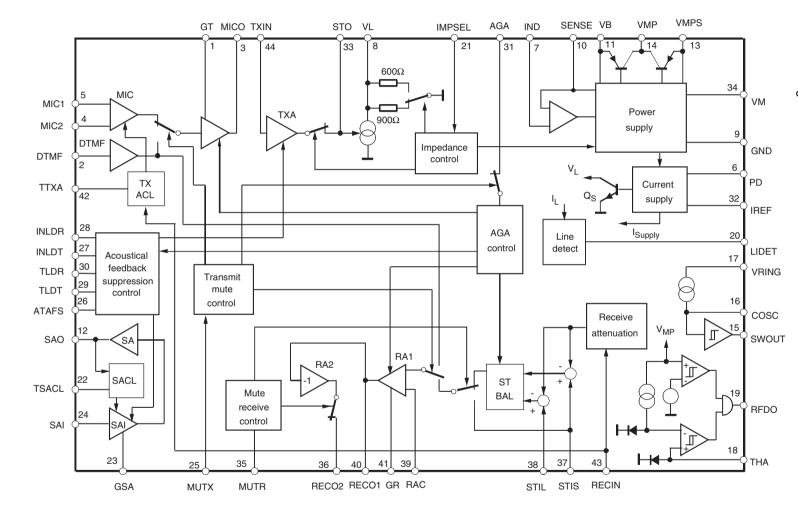
U4090B-P

Rev. 4741C-CORD-11/05



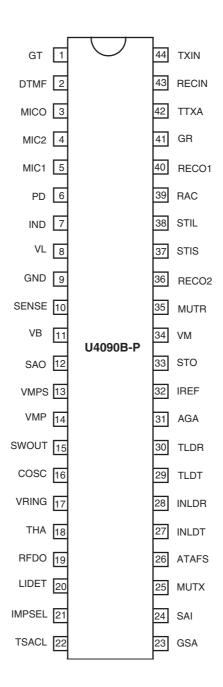


1. Description


The microcontroller-controlled telephone circuit U4090B-P is a linear integrated circuit for use in feature phones, answering machines and fax machines. It contains the speech circuit, tone ringer interface with DC/DC converter, sidetone equivalent and ear protection rectifiers. The circuit is line powered and contains all components necessary for amplification of signals and adaptation to the line.

An integrated voice switch with loudspeaker amplifier allows loud-hearing or hands-free operation. With an anti-feedback function, acoustical feedback during loud-hearing can be reduced significantly. The generated supply voltage is suitable for a wide range of peripheral circuits.

U4090B-P



2. Pin Configuration

Pin	Symbol	Function					
1	GT	A resistor from this pin to GND sets the amplification of the microphone and DTMF signals, the input amplifier can be muted by applying VMP to $\rm G_T$					
2	DTMF	Input for DTMF signals, also used for the answering machine and hands-free input					
3	MICO	Output of microphone preamplifier					
4	MIC2	on-inverting input of microphone amplifier					
5	MIC1	Inverting input of microphone amplifier					
6	PD	Active high input for reducing the current consumption of the circuit, simultaneously V_{L} is shorted by an internal switch					
7	IND	The internal equivalent inductance of the circuit is proportional to the value of the capacitor at this pin, a resistor connected to ground may be used to reduce the DC line voltage					
8	VL	Line voltage					
9	GND	Reference point for DC- and AC-output signals					
10	SENSE	A small resistor (fixed) connected from this pin to V_L sets the slope of the DC characteristic and also effects the line-length equalization characteristics and the line current at which the loudspeaker amplifier is switched on					
11	VB	Unregulated supply voltage for peripheral circuits (voice switch), limited to typically 7V					
12	SAO	Output of loudspeaker amplifier					
13	VMPS	Unregulated supply voltage for micorcontroller, limited to 6.3V					
14	VMP	Regulated supply voltage of 3.3V for peripheral circuits (especially microprocessors), minimum output current: 2 mA (ringing) 4 mA (speech mode)					
15	SWOUT	Output for driving external switching transistor					
16	COSC	40-kHz oscillator for ringing power converter					
17	VRING	Input for ringing signal protected by internal Zener diode					
18	THA	Threshold adjustment for ringing frequency detector					
19	RFDO	Output of ringing frequency detector					
20	LIDET	Line detect; output is low when the line current is more than 15 mA					
21	IMPSEL	 Control input for selection of line impedance 1. 600Ω 2. 900Ω 3. Mute of second transmit stage (TXA); also used for indication of external supply (answering machine); last chosen impedance is stored 					
22	TSACL	Time constant of anti-clipping of speaker amplifier					
23	GSA	Current input for setting the gain of the speaker amplifier, adjustment characteristic is logarithmical, or RGSA > 2 M Ω , the speaker amplifier is switched off					
24	SA I	Speaker amplifier input (for loudspeaker, tone ringer and hands-free use)					
25	MUTX	 Three-state input of transmit mute: 1. Speech condition; inputs MIC1/MIC2 active 2. DTMF condition; input DTMF active. A part of the input signal is passed to the receiving amplifier as a confidence signal during dialing 3. Input DTMF used for answering machine and hands-free use; receive branch not affected 					
26	ATAFS	Attenuation of acoustical feedback suppression, maximum attenuation of AFS circuit is set by a resistor at this pin, without the resistor, AFS is switched off					
27	INLDT	Input of transmit level detector					
28	INLDR	Input of receive level detector					
29	TLDT	Time constant of transmit level detector					

Pin Description

Table 2-1.

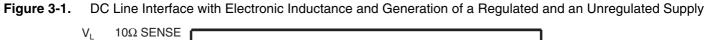
R

Table 2-1. Pin Description (Continued)

Pin	Symbol	Function			
30	TLDR	Time constant of receive level detector			
31	AGA	Automatic gain adjustment with line current, a resistor connected from this pin to GND sets the starting point, maximum gain change: 6 dB.			
32	IREF	Internal reference current generation; RREF = 62 k Ω ; IREF = 20 μ A			
33	STO	Sidetone reduction output Output resistance approximate: 300Ω, Maximum load impedance: 10 kΩ			
34	VM	Reference node for microphone-earphone and loudspeaker amplifier, supply for electret microphone (IM \leq 700 mA)			
35	MUTR	Three-state mute input 1. Normal operation 2. Mute for ear piece 3. Mute for RECIN signal Condition of earpiece mute is stored			
36	RECO2	Inverting output of receiving amplifier			
37	STIS	Input for sidetone network (short loop) or for answering machine			
38	STIL	Input for sidetone network (long loop)			
39	RAC	Input of receiving amplifier for AC coupling in feedback path			
40	RECO1	Output of receiving amplifier			
41	GR	A resistor connected from this pin to GND sets the receiving amplification of the circuit; amplifier RA1 can be muted by applying VMP to GR			
42	TTXA	Time constant of anti-clipping in transmit path			
43	RECIN	Input of receiving path; input impedance is typically 80 k Ω			
44	TXIN	Input of intermediate transmit stage, input resistance is typically 20 $k\Omega$			

Note: Filters against electromagnetic interference (EMI) are located at following pins: MIC1, MIC2, RECIN, TXIN, STIS, STIL and RAC.

3. DC Line Interface and Supply-voltage Generation


The DC line interface consists of an electronic inductance and a dual-port output stage which charges the capacitors at V_{MPS} and V_B . The value of the equivalent inductance is given by:

 $L = R_{SENSE} \times C_{IND} \times ((R_{DC} \times R_{30})/(R_{DC} + R_{30}))$

In order to improve the supply during worst-case operating conditions, two PNP current sources - I_{BOPT} and I_{MPSOPT} - hand an extra amount of current to the supply voltages when the NPNs in parallel are unable to conduct current.

A flowchart for the control of the current sources (Figure 3-2) shows how a priority for supply VMPS is achieved.

6

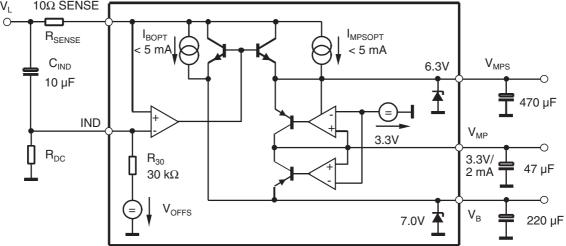
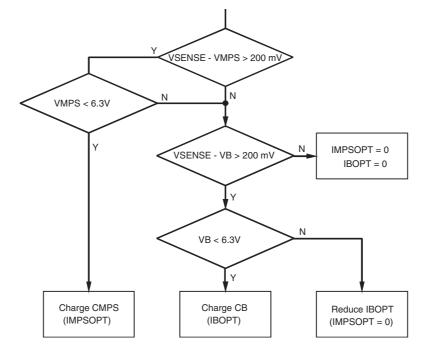



Figure 3-2. Supply Capacitors CMPS and CB Are Charged with Priority on CMPS

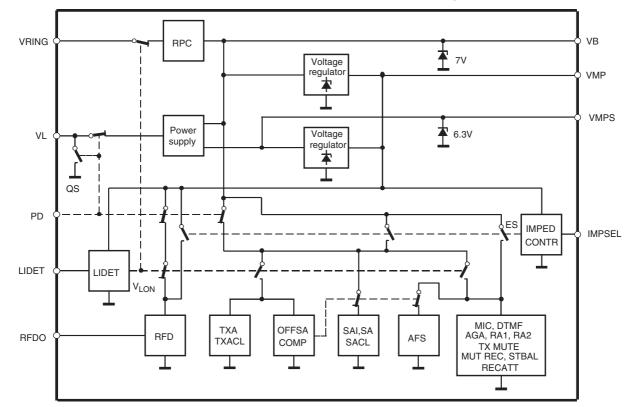


Figure 3-3. Supply of Functional Blocks Controlled by Input Voltages VL, VB, VRING and by Logic Inputs PD and IMPSEL

The U4090B-P contains two identical series regulators which provide a supply voltage V_{MP} of 3.3V suitable for a microprocessor. In speech mode, both regulators are active because V_{MPS} and V_B are charged simultaneously by the DC-line interface. Output current is 4 mA. The capacitor at V_{MPS} is used to provide the microcomputer with sufficient power during long-line interruptions. Thus, long flash pulses can be bridged or an LCD display can be turned on for more than 2 seconds after going on hook. When the system is in ringing mode, V_B is charged by the on-chip ringing power converter. In this mode only one regulator is used to supply V_{MP} with a maximum of 2 mA.

3.1 Supply Structure of the Chip

A major benefit of the chip is that it uses a very flexible supply structure which allows simple realization of numerous applications such as:

- Group listening phone
- Hands-free phone
- Ringing with the built in speaker amplifier
- Answering machine with external supply

The special supply topology for the various functional blocks is illustrated in Figure 3-3.

8

There are four major supply states:

- Speech condition: In speech condition the system is supplied by the line current. If the LIDET-block detects a line voltage above the fixed threshold (1.9 V), the internal signal VLON is activated, thus switching off RFD and RPC and switching on all other blocks of the chip. At line voltages below 1.9V, the switches remain in their quiescent state as shown in Figure 3-4 on page 10.
 OFFSACOMP disables the group listening feature (SAI, SA, SACL, AFS) below line currents of approximately 10 mA.
- Power down (pulse dialing): When the chip is in power-down mode (PD = high), e.g., during pulse dialing, the internal switch QS shorts the line and all amplifiers are switched off. In this condition, LIDET, voltage regulators and IMPED CONTR are the only active blocks.
- Ringing: During ringing, the supply for the system is fed into V_B via the ringing power converter (RPC). The only functional amplifiers are in the speaker amplifier section (SAI, SA, SACL).
- 4. External supply: In an answering machine, the chip is powered by an external supply via pin V_B . This application allows the possibility to activate all amplifiers (except the transmit line interface TXA). Selecting IMPSEL = high impedance activates all switches at the ES line.

3.2 Acoustic Feedback Suppression

Acoustical feedback from the loudspeaker to the handset microphone may cause instability in the system. The U4090B-P offers a very efficient feedback suppression circuit, which uses a modified voice switch topology. Figure 3-4 on page 10 shows the basic system configuration.

Two attenuators (TX ATT and RX ATT) reduce the critical loop gain by introducing an externally adjustable amount of loss either in the transmit or in the receive path. The sliding control in block ATT CONTR determines, whether the TX or the RX signal has to be attenuated. The overall loop gain remains constant under all operating conditions.

Selection of the active channel is made by comparison of the logarithmically compressed TXand RX- envelope curve.

The system configuration for group listening, which is realized in the U4090B-P, is illustrated in Figure 3-6 on page 11. TXA and SAI represent the two attenuators, the logarithmic envelope detectors are shown in a simplified way (operational amplifiers with two diodes).

Figure 3-4. Basic Voice Switch System

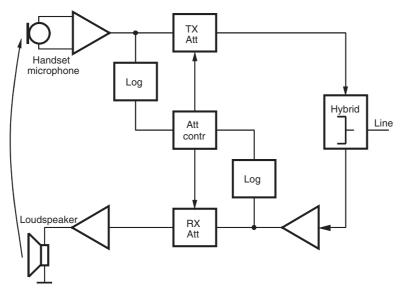
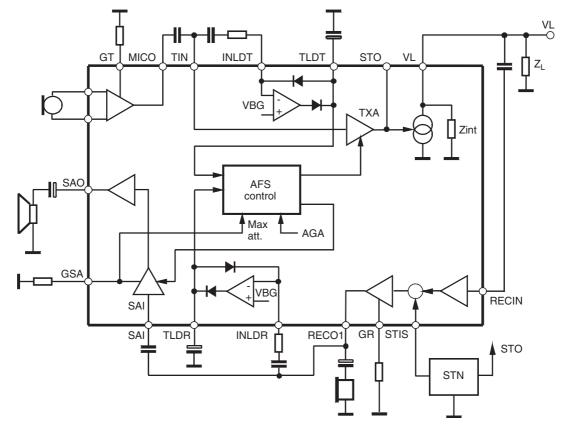



Figure 3-5. Integration of the Acoustic Feedback Suppression Circuit into the Speech Circuit Environment

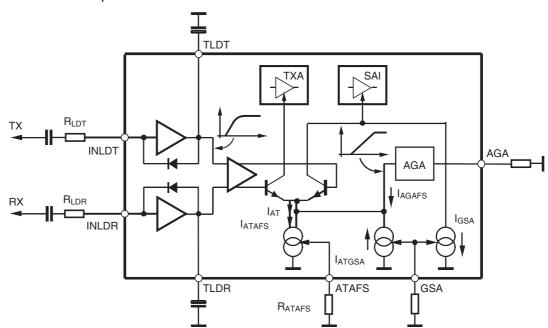


Figure 3-6. Acoustic Feedback Suppression by Alternative Control of Transmit and Speaker Amplifier Gain

A detailed diagram of the AFS (acoustic feedback suppression) is given in Figure 3-6. Receive and transmit signals are first processed by logarithmic rectifiers in order to produce the envelopes of the speech at TLDT and RLDT. After amplification, a decision is made by the differential pair which direction should be transmitted.

The attenuation of the controlled amplifiers TXA and SAI is determined by the emitter current IAT which consists of three parts:

I_{ATAS} sets maximum attenuation

I_{ATGSA} decreases the attenuation when speaker amplifier gain is reduced

I_{AGAFS} decreases the attenuation according to the loop gain reduction caused by the AGA function

 $I_{AT} = I_{ATAFS} - I_{ATGSA} - I_{AGAFS}$

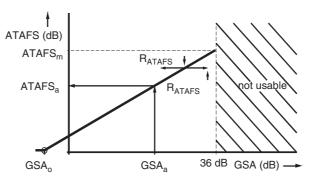

 $\Delta G = I_{AT} \times 0.67 \text{ dB/}\mu\text{A}$

Figure 3-7 on page 12 illustrates the principle relationship between speaker amplifier gain (GSA) and attenuation of AFS (ATAFS). Both parameters can be adjusted independently, but the internal coupling between them has to be considered. The maximum usable value of GSA is 36 dB. The shape of the characteristic is moved in the x-direction by adjusting resistor RATAFS, thus changing ATAFS_m. The actual value of attenuation (ATAFS_a), however, can be determined by reading the value which belongs to the actual gain GSA_a. If the speaker amplifier gain is reduced, the attenuation of AFS is automatically reduced by the same amount in order to achieve a constant loop gain. Zero attenuation is set for speaker gains $GSA \leq GSA0 = 36 \text{ dB} - \text{ATAFS}_m$.

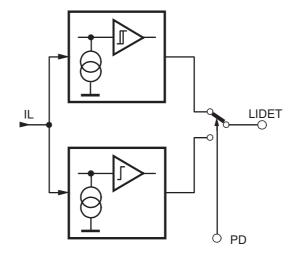
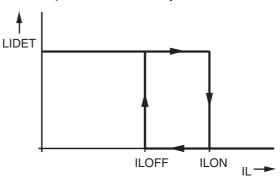


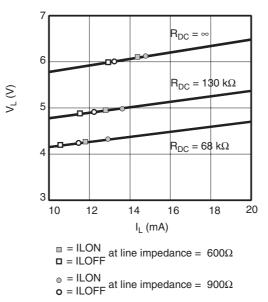
Figure 3-7. Reducing Speaker Amplifier Gain Results in an Equal Reduction of AFS Attenuation



3.3 Line Detection (LIDET)

The line current supervision is active under all operating conditions of the U4090B-P. In speech mode (PD = inactive), the line-current comparator uses the same thresholds as the comparator for switching off the entire speaker amplifier. The basic behavior is illustrated in Figure 3-9 on page 13. Actual values of ILON/ILOFF vary slightly with the adjustment of the DC characteristics and the selection of the internal line impedance.

When Power Down is activated (during pulse dialing), the entire line current flows through the short-circuiting transistor QS (see Figure 3-3 on page 8). As long as IL is above typically 1.6 mA, output LIDET is low. This comparator does not use hysteresis.


Figure 3-9. Line Detection in Speech Mode with Hysteresis

3.4 Ringing Power Converter (RPC)

The RPC transforms the input power at VRING (high voltage/low current) into an equivalent output power at V_B (low voltage/high current) which is capable of driving the low-ohmic loudspeaker. Input impedance at VRING is fixed at 5 k Ω and the efficiency of the step-down converter is approximate 65%.

3.5 Ringing Frequency Detector (RFD)

The U4090B-P offers an output signal for the microcontroller, which is a digital representation of the double ringing frequency. It is generated by a current comparator with hysteresis. The input voltage V_{RING} is transformed into a current via RTHA. The thresholds are 8 µA and 24 µA. RFDO and V_{RING} are in phase. A second comparator with hysteresis is used to enable the output RFDO as long as the supply voltage for the microprocessor VMP is above 2.0V.

Absolute Maximum Ratings 4.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Line current	ار	140	mA
DC line voltage	VL	12	V
Maximum input current, pin 17	I _{RING}	15	mA
Junction temperature	Tj	125	°C
Ambient temperature	T _{amb}	-25 to +75	°C
Storage temperature	T _{stg}	–55 to +150	°C
Total power dissipation, $T_{amb} = 60^{\circ}C$	P _{tot}	0.9	W

5. **Thermal Resistance**

Parameters	Symbol	Value	Unit
Junction ambient SSO44	R _{thJA}	70	K/W

Electrical Characteristics 6.

 $f = 1 \text{ kHz}, 0 \text{ dBm} = 775 \text{ mV}_{\text{rms}}, I_{\text{M}} = 0.3 \text{ mA}, I_{\text{MP}} = 2 \text{ mA}, \text{RDC} = 130 \text{ k}\Omega, T_{\text{amb}} = 25^{\circ}\text{C}, \text{RGSA} = 560 \text{ k}\Omega, Z_{\text{ear}} = 68 \text{ nF} + 100\Omega, Z_{\text{M}} = 68 \text{ nF}, \text{pin 31 open}, V_{\text{IMPSEL}} = \text{GND}, V_{\text{MUTX}} = \text{GND}, V_{\text{MUTR}} = \text{GND}, \text{unless otherwise specified}.$

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
DC Characteristics	·					
DC voltage drop over circuit	$I_{L} = 2 \text{ mA}$ $I_{L} = 14 \text{ mA}$ $I_{L} = 60 \text{ mA}$ $I_{L} = 100 \text{ mA}$	VL	4.6 8.8	2.4 5.0 7.5 9.4	5.4 10.0	V
Transmission Amplifier, I _L = 14 m/	A, V _{MIC} = 2 mV, R _{GT} = 27 kΩ, Unle	ss Otherwise Specifi	ed			
Range of transmit gain		G _T	40	45	50	dB
Transmitting amplification	$\begin{array}{l} R_{GT} = 12 \; k\Omega \\ R_{GT} = 27 \; k\Omega \end{array}$	G _T	47 39.8	48	49 41.8	dB
Frequency response	I _L ≥ 14 mA f = 300 to 3400 Hz	ΔG _T			±0.5	dB
Gain change with current	Pin 31 open I _L = 14 to 100 mA	ΔG _T			±0.5	dB
Gain deviation	$T_{amb} = -10$ to $+60^{\circ}$ C	ΔG_T			±0.5	dB
CMRR of microphone amplifier		CMRR	60	80		dB
Input resistance of MIC amplifier	R_{GT} = 12 kΩ R_{GT} = 27 kΩ	R _i	45	50 75	110	kΩ
Distortion at line	$I_L > 14 \text{ mA}$ $V_L = 700 \text{ mV}_{rms}$	d _t			2	%
Maximum output voltage	I _L > 19 mA, d < 5% V _{MIC} = 25 mV CTXA = 1 μF	V _{Lmax}	1.8	3	4.2	dBm
	IMPSEL = open R_{GT} = 12 k Ω	V _{MICOmax}		-5.2		dBm

f = 1 kHz, 0 dBm = 775 mV_{rms}, I_M = 0.3 mA, I_{MP} = 2 mA, RDC = 130 kΩ, T_{amb} = 25°C, RGSA = 560 kΩ, Z_{ear} = 68 nF + 100Ω, Z_M = 68 nF, pin 31 open, V_{IMPSEL} = GND, V_{MUTX} = GND, V_{MUTR} = GND, unless otherwise specified.

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Noise at line psophometrically weighted	$I_L > 14 \text{ mA}$ $G_T = 48 \text{ dB}$	no		-80	-72	dBmp
Anti-clipping attack time release time	CTXA = 1 μ F each 3 dB overdrive			0.5 9		ms
Gain at low operating current	$I_{L} = 10 \text{ mA}$ $I_{MP} = 1 \text{ mA}$ $RDC = 68 \text{ k}\Omega$ $V_{MIC} = 1 \text{ mV}$ $I_{M} = 300 \mu\text{A}$	G _T	40		42.5	dB
Distortion at low operating current		d _t			5	%
Line loss compensation	$I_L = 100 \text{ mA}$ $R_{AGA} = 20 \text{ k}\Omega$	ΔG_{TI}	-6.4	-5.8	-5.2	dB
Mute suppression a) MIC muted	$I_L \ge 14 \text{ mA}$ MUTX = open	G _{TM}	60	80		dB
(microphone preamplifier) b) TXA muted (second stage)	IMPSEL = open	G _{TTX}	60			dB
Receiving Amplifier, $I_L = 14 \text{ mA}, R_G$	_R = 62 kΩ, Unless Otherwise Specifie	d, V _{GEN} = 300 n	۱V			
Adjustment range of receiving gain	$I_L \ge 14$ mA, single ended differential MUTR = GND	G _R	8 2		+2 +8	dB
Receiving amplification	$R_{GR} = 62 \text{ k}\Omega \text{ differential} R_{GR} = 22 \text{ k}\Omega \text{ differential}$	G _R	-1.75	-1 7.5	-0.25	dB
Amplification of DTMF signal from DTMF IN to RECO 1, 2	$I_L \ge 14 \text{ mA}$ $V_{MUTX} = V_{MP}$	G _{RM}	7	10	13	dB
Frequency response	I _L > 14 mA, f = 300 to 3400 Hz	ΔG_{RF}			±0.5	dB
Gain change with current	I _L = 14 to 100 mA	ΔG_R			±0.5	dB
Gain deviation	$T_{amb} = -10$ to $+60^{\circ}C$	ΔG_R			±0.5	dB
Ear-protection differential	$I_L \ge 14 \text{ mA}, V_{GEN} = 11 V_{rms}$	EP			2.2	V _{rms}
MUTE suppression a) RECATT b) RA2 c) DTMF operation	$\label{eq:ll} \begin{array}{l} I_L \geq 14 \mbox{ mA} \\ MUTR = \mbox{open} \\ V_{MUTR} = V_{MP} \\ V_{MUTX} = V_{MP} \end{array}$	ΔG_{R}	60			dB
Output voltage d ≤2% differential	$I_{L} = 14 \text{ mA}, Z_{ear} = 68 \text{ nF} + 100\Omega$		0.775			V _{rms}
Maximum output current d ∞2%	$Z_{ear} = 100\Omega$		4			mA (peak)
Receiving noise psophometrically weighted	$\begin{array}{l} Z_{ear}=68 \text{ nF}+100\Omega\\ I_L\geq 14 \text{ mA} \end{array}$	ni		-80	-77	dBmp
Output resistance	Each output against GND	R _o			10	Ω
Line loss compensation	R _{AGA} = 20 kΩ, I _L = 100 mA	∆G _{RI}	-7.0	-6.0	-5.0	dB

f = 1 kHz, 0 dBm = 775 mV_{rms}, I_M = 0.3 mA, I_{MP} = 2 mA, RDC = 130 kΩ, T_{amb} = 25°C, RGSA = 560 kΩ, Z_{ear} = 68 nF + 100Ω, Z_M = 68 nF, pin 31 open, V_{IMPSEL} = GND, V_{MUTX} = GND, V_{MUTR} = GND, unless otherwise specified.

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Gain at low operating current	$I_{L} = 10 \text{ mA}$ $I_{MP} = 1 \text{ mA}$ $I_{M} = 300 \mu \text{A}$ $V_{GEN} = 560 \text{ mV}$ RDC = 68 k Ω	G _R	-2	-1	0	dB
AC impedance	V _{IMPSEL} = GND V _{IMPSEL} = V _{MP}	Z _{imp} Z _{imp}	570 840	600 900	640 960	Ω Ω
Distortion at low operating current	$I_{L} = 10 \text{ mA}$ $I_{MP} = 1 \text{ mA}$ $V_{GEN} = 560 \text{ mV}$ RDC = 68 k Ω	dR			5	%
Speaker Amplifier						
Minimum line current for operation	No AC signal	I _{Lmin}			15	mA
Input resistance	Pin 24		14		22	kΩ
Gain from SAI to SAO	$V_{SAI} = 3 \text{ mV}$ $I_L = 15 \text{ mA}$ $R_{GSA} = 560 \text{ k}\Omega$ $R_{GSA} = 20 \text{ k}\Omega$	G _{SA}	35.5	36.5 -3	37.5	dB
Output power	Load resistance $R_L = 50\Omega, d < 5\%$ $V_{SAI} = 20 \text{ mV}$ $I_L = 15 \text{ mA}$ $I_L = 20 \text{ mA}$	P _{SA} P _{SA}	3	7 20		mW
Output noise (Input SAI open) psophometrically weighted	I _L > 15 mA	n _{SA}			200	μV_{psoph}
Gain deviation	$I_{L} = 15 \text{ mA}, T_{amb} = -10 \text{ to } +60^{\circ} \text{ C}$	ΔG_{SA}			±1	dB
Mute suppression	$I_L = 15 \text{ mA}$ $V_L = 0 \text{ dBm}$ $V_{SAI} = 4 \text{ mV}$ Pin 23 open	V _{SAO}			-60	dBm
Gain change with current	I _L = 15 to 100 mA	ΔG_{SA}			±1	dB
Resistor for turning off speaker amplifier	I _L = 15 to 100 mA	RG _{SA}	0.8	1.3	2	MΩ
Gain change with frequency	I _L = 15 mA, f = 300 to 3400 Hz	ΔG_{SA}			±0.5	dB
Attack time of anti-clipping	20 dB over drive	tr		5		ms
Release time of anti-clipping		tf		80		ms
DTMF Amplifier Test Conditions: II	$MP = 2 \text{ mA}, IM = 0.3 \text{ mA}, V_{MUTX} = VMP$			•		•
Adjustment range of DTMF gain	$I_L = 15$ mA mute active	G _D	40		50	dB
DTMF amplification	$I_L = 15 \text{ mA}$ $V_{DTMF} = 8 \text{ mV}$ Mute active: MUTX = V_{MP}	G _D	40.7	41.7	42.7	dB
Gain deviation	$I_{L} = 15 \text{ mA}, T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$	G _D			±0.5	dB
Input resistance	$R_{GT} = 27 kΩ$ $R_{GT} = 15 kΩ$	R _i	60 26	180 70	300 130	kΩ
Distortion of DTMF signal	$I_L \ge 15 \text{ mA}$ $V_L = 0 \text{ dBm}$	d _D			2	%

 $f = 1 \text{ kHz}, 0 \text{ dBm} = 775 \text{ mV}_{\text{rms}}, I_{\text{M}} = 0.3 \text{ mA}, I_{\text{MP}} = 2 \text{ mA}, \text{RDC} = 130 \text{ k}\Omega, T_{\text{amb}} = 25^{\circ}\text{C}, \text{RGSA} = 560 \text{ k}\Omega, Z_{\text{ear}} = 68 \text{ nF} + 100\Omega, Z_{\text{M}} = 68 \text{ nF}, \text{pin 31 open}, V_{\text{IMPSEL}} = \text{GND}, V_{\text{MUTX}} = \text{GND}, V_{\text{MUTR}} = \text{GND}, \text{unless otherwise specified}.$

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Gain deviation with current	I _L = 15 to 100 mA	ΔG_D			±0.5	dB
AFS Acoustic Feedback Suppression	on la				•	
Adjustment range of attenuation	$I_L \ge 15 \text{ mA}$		0		50	dB
Attenuation of transmit gain	$I_{L} \ge 15 \text{ mA}$ $I_{\text{INLDT}} = 0 \ \mu\text{A}$ $R_{\text{ATAFS}} = 30 \ k\Omega$ $I_{\text{INLDR}} = 10 \ \mu\text{A}$	ΔG _T		45		dB
Attenuation of speaker amplifier	$I_{L} \ge 15 \text{ mA}$ $I_{INLDP} = 0 \ \mu\text{A}$ $R_{ATAFS} = 30 \ k\Omega$ $I_{INLDR} = 10 \ \mu\text{A}$	ΔG_{SA}		50		dB
AFS disable	$I_L \ge 15 \text{ mA}$	V _{ATAFS}	1.5			V
Supply Voltages, V _{MIC} = 25 mV, T _{amb}	= -10 to +60°C		1			
V _{MP}	$I_L = 14 \text{ mA}$ RDC = 68 k Ω $I_{MP} = 2 \text{ mA}$	V _{MP}	3.1	3.3	3.5	V
V _{MPS}	$I_L = 100 \text{ mA}$ RDC = infinite $I_{MP} = 0 \text{ mA}$	V _{MPS}			6.7	v
V _M	$I_{L} \ge 14 \text{ mA}$ $I_{M} = 700 \mu\text{A}$ $RDC = 130 k\Omega$	V _M	1.3		3.3	V
V _B	I _B = 20 mA I _L = 0 mA	V _B		7	7.6	V
Ringing Power Converter, IMP = 1 m	nA, IM = 0		1			
Maximum output power	V _{RING} = 20.6V	P _{SA}		20		mW
Threshold of ring frequency detector	RFDO: low to high $V_{HYST} = V_{RING}ON - V_{RING}OFF$	V _{RINGON} V _{HYST}		17.5 11.0		V
Input impedance	V _{RING} = 30V	R _{RING}	4	5	6	kΩ
Input impedance in speech mode	f = 300 Hz to 3400 Hz I _L > 15 mA V _{RING} = 20V + $1.5V_{rms}$	R _{RINGSP}	150			kΩ
Logic level of frequency detector	$V_{RING} = 0V$ $V_{B} = 4V$ $V_{RING} = 25V$	V _{RFDO}		0 V _{MP}		v
Ring detector enable	V _{RING} = 25V, RFDO high	V _{MPON}	1.8	2.0	2.2	V
Zener diode voltage	I _{RING} = 25 mA	V _{RINGmax}	30.8		33.3	V
MUTR Input			1	1	1	1
MUTR input current	$V_{MUTR} = GND$ $I_L > 14 mA$ $V_{MUTR} = V_{MP}$	I _{MUTE}		-20 +10	-30	μΑ
	Mute low; I _L > 14 mA	V _{MUTE}			0.3	V
MUTR input voltage	Mute high; I _L > 14 mA	V _{MUTE}	VMP – 0.3V			V

R

f = 1 kHz, 0 dBm = 775 mV_{rms}, I_M = 0.3 mA, I_{MP} = 2 mA, RDC = 130 kΩ, T_{amb} = 25°C, RGSA = 560 kΩ, Z_{ear} = 68 nF + 100Ω, Z_M = 68 nF, pin 31 open, V_{IMPSEL} = GND, V_{MUTX} = GND, V_{MUTR} = GND, unless otherwise specified.

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
PD Input						
PD input current	PD active, $I_L > 14 \text{ mA } V_{PD} = V_{MP}$	I _{pd}		9		μA
Input voltage	PD = active PD = inactive	V _{pd} V _{pd}	2		0.3	V
Voltage drop at V_L	$I_L = 14$ mA, PD = active $I_L = 100$ mA, PD = active	VL		1.5 1.9		V
Input Characteristics of IMPSEL		÷				
Input current	$ I_{L} \ge 14 \text{ mA} $ $ V_{\text{IMPSEL}} = V_{\text{MP}} $ $ V_{\text{IMPSEL}} = \text{GND} $	I _{IMPSEL} I _{IMPSEL}		18 –18		μA μA
Input voltage	Input high	VIMPSEL	V _{MP} – 0.3V			V
	Input low	VIMPSEL			0.3	V
MUTX Input						
Input current	V _{MUTX} = V _{MP} V _{MUTX} = GND	I _{MUTX} I _{MUTX}		20 –20	30 30	μΑ μΑ
Input voltage	Input high	V _{MUTX}	V _{MP} – 0.3V			V
	Input low	V _{MUTX}			0.3	V
Line Detection						
Line current for LIDET active	PD = inactive	ILON		12.6		mA
Line current for LIDET inactive	PD = inactive	ILOFF		11.0		mA
Current threshold during power down	$V_B = 5V, PD = active$	ILONPD	0.8	1.6	2.4	mA

7. U4090B-P Control

Logic Level	IMPSEL	MODE
0	Line impedance = 600Ω TXA = on ES = off	Speech
0 to Z	Line impedance = 600Ω TXA = off ES = on	Transmit-mute
1 to Z	Line impedance = 900Ω TXA = off ES = on	Transmit-mute
1	Line impedance = 900Ω TXA = on ES = off	Speech

 Table 7-1.
 Selection of TX Mute and Line Impedance

Table 7-2.	Selection of Earpiece Mute and Answering Machine Mode
	colocitori or Earpicee mate and rineworing machine mede

Logic Level	MUTR	MODE
0	RA2 = on RECATT = on STIS + STIL = on	Speech
0 to Z	RA2 = on RECATT = off STIS = on, STIL = off	For answering machine
1 to Z	RA2 = off RECATT = off STIS = on, STIL = off AGA off for STIS	For answering machine
1	RA2 = off RECATT = on STIS + STIL = on	Speech + earpeace mute

Table 7-3. Se	lection of 7	Transmit Mute
---------------	--------------	---------------

Logic Level	митх	MODE
0	MIC 1/2 transmit enabled receive enable AFS = on AGA = on TXACL = on	Speech
Z	DTMF transmit enabled receive enable AFS = on AGA = on TXACL = on	For answering machine
1	DTMF transmit enabled DTMF to receive enable AFS = off AGA = off TXACL = off	DTMF dialling

Table 7-4.	Specification of Logic Levels

Logic Level 0 = < (0.3V)

Z = > (1V) < (VMP - 1V) or (open input)1 = > (VMP - 0.3V)

8. Explanation of Abbreviations

RECATT = Receive attenuation

STIS, STIL = Inputs of sidetone balancing amplifiers

ES = External supply

AFS = Acoustic feedback suppression control

AGA = Automatic gain adjustment

RA2 = Inverting receive amplifier

TXACL = Transmit anti-clipping control

Figure 8-1. Typical DC Characteristic

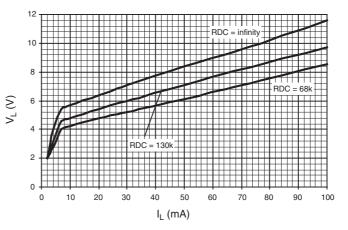
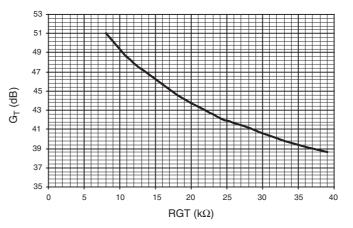
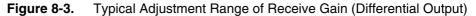




Figure 8-2. Typical Adjustment Range of Transmit Gain

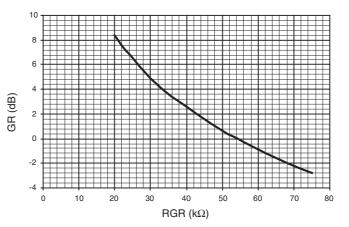
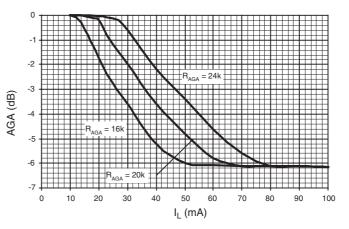
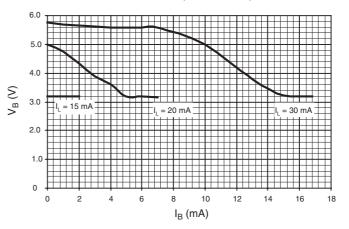
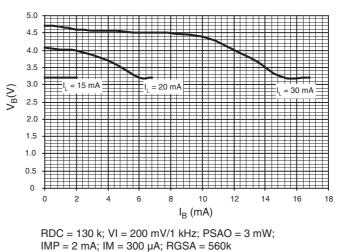




Figure 8-4. Typical AGA Characteristic

Figure 8-5. Typical Load Characteristic of V_B for a Maximum (RDC = Infinity) DC-characteristic and 3-mW Loudspeaker Output



 $\label{eq:RDC} \begin{array}{l} \text{RDC} = \text{Infinity; VI} = 200 \text{ mV/1 kHz; PSAO} = 3 \text{ mW;} \\ \text{IMP} = 2 \text{ mA; IM} = 300 \text{ } \mu\text{A; RGSA} = 560 \text{k} \end{array}$

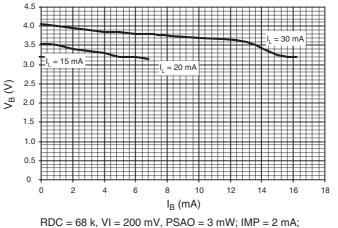


Figure 8-6. Typical Load Characteristic of V_B for a Medium DC-characteristic (RDC = 130 k Ω) and 3-mW Loudspeaker Output

Figure 8-7. Typical Load Characteristic of V_B for a Minimum DC-characteristic (RDC = 68 k Ω) and 3-mW Loudspeaker Output

RDC = 68 k, VI = 200 mV, PSAO = 3 mW; IMP = 2 mA; IM = 300 μ A; RGSA = 560k

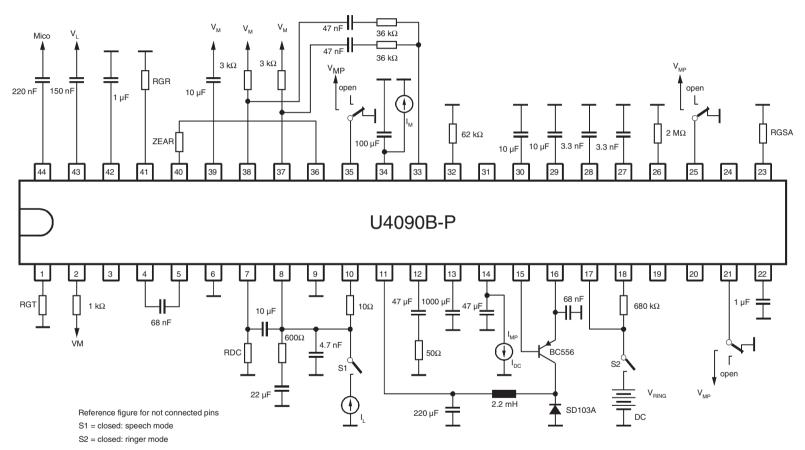
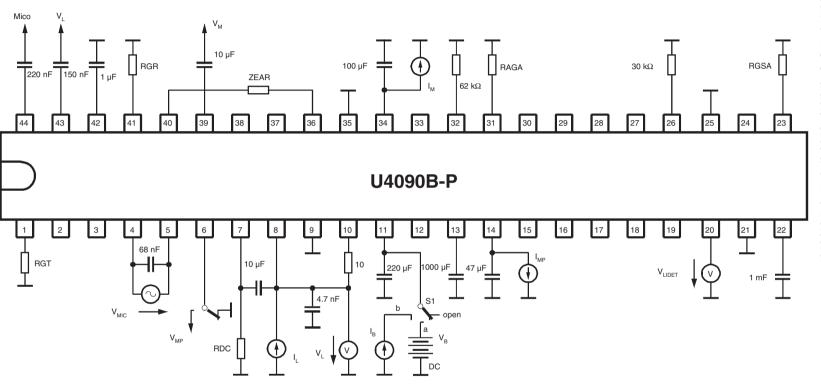
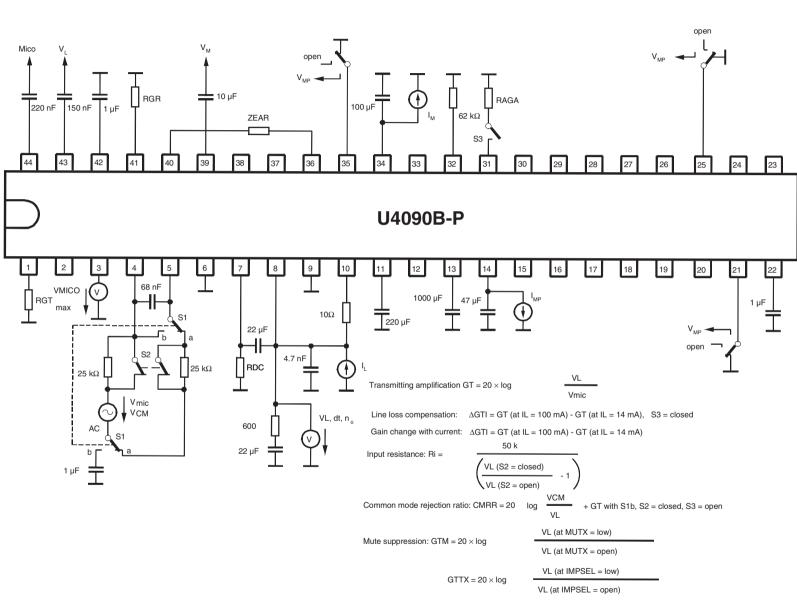



Figure 8-9. Test Circuit for DC Characteristics and Line Detection


Line detection: S1a

VB (external supply): S1b

Open pins should be connected as shown in Figure 8-14

24

Open pins should be connected as shown in Figure 8-14

Figure 8-10. Test Circuit for Transmission Amplifier