

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

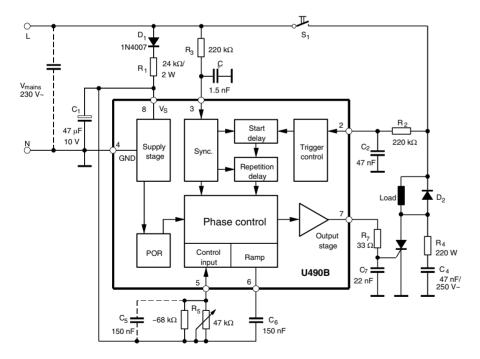
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Phase Controlled Thyristor Ignition
- Triggering with Time Delay
- Repetition Time Delay
- Supply Current ≤ 2 mA
- . Mains Supply via Resistor


Applications

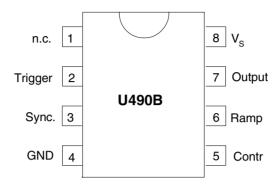
• Electric Stapler Devices

Description

The monolithic integrated bipolar circuit, U490B, is a one-shot power control circuit, designed to control the thyristor which is mainly used in electric stapler devices. The IC is preferred to realize a one-shot phase control, where any phase angle, thus any intensity of the load voltage is adjustable. After successful triggering and the following delay time, an ignition pulse at the output is released. Further triggering is only possible after the delay time elapses.

Figure 1. Block Diagram

One-shot Phase Control IC


U490B

Pin Configuration

Figure 2. Pinning DIP8/SO8

Pin Description

Pin	Symbol	Function
1	n.c.	Not connected
2	Trigger	Triggering
3	Sync.	Synchronization
4	GND	Ground
5	Contr	Control input
6	Ramp	Ramp
7	Output	Output
8	Vs	Supply voltage

Supply, Pin 8

The internal voltage limiter enables a simple supply from the mains via series resistor R_1 . The supply voltage between pin 8 (V_S) and ground (pin 4) builds up via R_1 and is smoothed by the capacitor C_1

The series resistor R₁ can be calculated as follows:

$$R_{1max} \approx 0.85 \times \frac{V_{mains} - V_{Smax}}{2 \times I_{tot}}$$
 where

V_{mains} Mains supply voltage

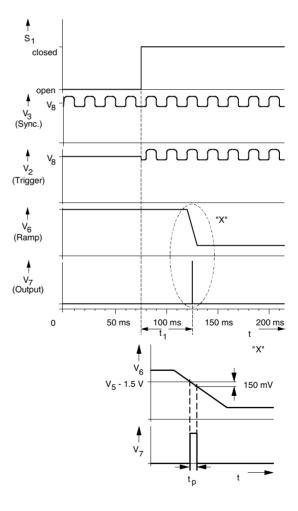
V_{Smax} Maximum supply voltage

 I_{tot} $I_{Smax} + I_{X}$

I_{Smax} Maximum current consumption of the IC

I_x Current consumption of the external components

Phase Control, Pins 3, 5 and 6


The circuit is synchronized with mains supply through pin 3. As long as the switch S_1 is open, the circuit is in wait state, i.e., the capacitor C_6 (150 nF) is discharged and is kept in this state (High level). When the switch S_1 is closed, there is a current flow in pin 2 which is evaluated by the circuit. If this current flows after the delay time elapses, the phase control is released. The capacitor C_6 is then charged with I_6 + 100 μ A towards ground. At the same time, a current of $\approx 100~\mu$ A flows into pin 5, which results in a voltage drop across resistor R_5 . The control voltage V_5 is then 1.5 V lower internally.

The output stage is released when the ramp voltage V_6 is equal to $(V_5 - 1.5 \text{ V})$. When the voltage difference is $\approx 150 \text{ mV}$, it is again turned-off.

The result is an output pulse, whose phase shift to the zero crossing of the mains voltage is determined by the resistor R_5 at the control input pin 5 (see Figure 3). The capacitor C_6 is charged to a value of ≈ 1.5 V. This value is kept until the switch S_1 opens again and the repetition delay time has elapsed.

The circuit is released when four periods of the line voltage have expired after build-up of the operating voltage, before the switch S_1 is closed.

Figure 3. Signal Characteristics

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Reference point pin 4 (GND), unless otherwise specified

Parameters	Symbol	Value	Unit	
Supply current, pin 8	Is	30	mA	
t ≤ 10 µs	i _s	150	mA	
Output stage				
Input voltage, pin 7	V _I	-0.5 to V _S	V	
Input current, pins 2 and 3	±l ₁	5	mA	
$t \le 1 \text{ ms}$	±l ₁	30	mA	
Input voltage, pins 5 and 6	V _I	0 to V ₈	V	
Junction temperature	T _j	+125	°C	
Ambient temperature	T _{amb}	-10 to +100	°C	
Storage temperature range	T _{stg}	-40 to +125	°C	

Thermal Resistance

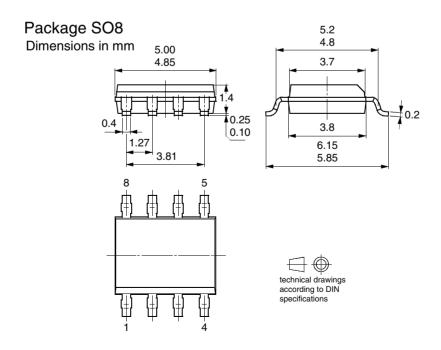
Parameters		Symbol	Value	Unit
Junction ambient	DIP8	R_{thJA}	110	K/W
	SO8 on p.c.	R_{thJA}	220	K/W
	SO8 on ceramic	R _{thJA}	140	K/W

Electrical Characteristics

 $V_S = 7 \text{ V}$, $T_{amb} = 25$ °C, reference point pin 4 (GND), unless otherwise specified

Parameters	Test Conditions/ Pins	Symbol	Min.	Тур.	Max.	Unit
Supply voltage limitation	$I_S = 3 \text{ mA}$ Pin 8 $I_S = 30 \text{ mA}$	V _S V _S	7.2 7.4	8.2 8.4	9.2 9.4	V V
Current consumption	V _S = 7 V Pin 8	I _S			2	mA
Voltage Monitoring	,	<u>'</u>				
Switch-on threshold Switch-off threshold	Pin 8	V _{Son} V _{Soff}		5 3		V V
Synchronization						
Voltage limitation	$I_3 = +1 \text{ mA}$ Pin 3 – 8 $I_3 = -1 \text{ mA}$	V _{lim} -V _{lim}		1.5 0.75		V V
Switch-on threshold Switch-off threshold	Pin 3	I _{Ton} I _{Toff}		120 35		μΑ μΑ
Trigger Input						
Voltage limitation	$I_2 = +1 \text{ mA}$ Pin 2 – 8 $I_2 = -1 \text{ mA}$	V _{lim} -V _{lim}		1.5 0.75		V V
Switch-on threshold Switch-off threshold	Pin 2	I _{Ton} I _{Toff}		120 35		μΑ μΑ
Start delay time Repetition delay time	f _{mains} = 50 Hz Pin 2–7	t ₁ t ₂	40 60		60 80	ms ms

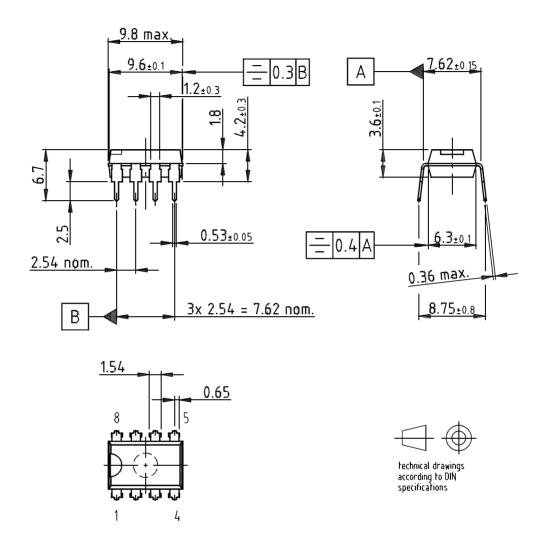
Electrical Characteristics (Continued)


 $V_S = 7 \text{ V}$, $T_{amb} = 25$ °C, reference point pin 4 (GND), unless otherwise specified

Parameters	Test Conditions/ Pins	Symbol	Min.	Тур.	Max.	Unit
Phase Control	·		"		"	
Control input: Input voltage range Input current	Pin 5 $2 V \le V_5 \le V_8$	V _I	2 50	90	V _s 130	V µA
Ramp			+		+	
Charge current Discharge current	$2 \text{ V} \le \text{V}_6 \le \text{V}_8 - 0.5 \text{ V}$ $\text{V}_5 = 4 \text{ V}$	I _{ch} -Idis	50 2	90	130	μA mA
Phase Shift	$C_6 = 150 \text{ nF}, V_5 = 2 \text{ V} $ $V_5 = V_8,$ Pin 7–5	t _{dmax} t _{dmin}		7 600		ms µs
Output Stage, V ₇ + 0 V, Pin 7						
Output reverse current Output current	Status OFF Status ON	±lo(r) -lo	100		10	μA mA
Pulse width	C ₆ = 150 nF (see Figure 3 on page 3)	t _p	100	200	300	μs

Ordering Information

Extended Type Number	Package	Remarks
U490B-x	DIP8	Tube
U490B-xFP	SO8	Tube
U490B-xFPG3	SO8	Taped and reeled


Package Information

Package: DIP 8
Dimensions in mm

Drawing-No.: 6.543-5040.01-4

Issue: 1; 16.01.02

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Atmel Operations

Memoru

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France

Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

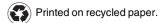
Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80


Literature Requests
www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.

Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be the trademarks of others.

