

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

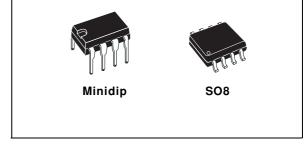
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

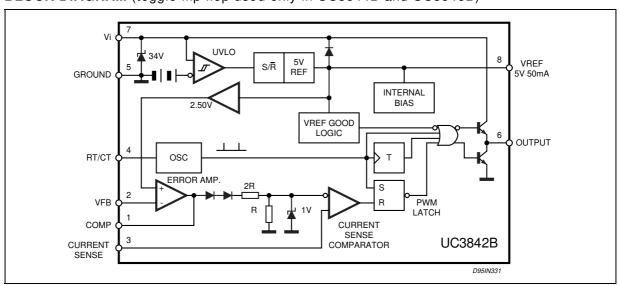
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



UC2842B/3B/4B/5B UC3842B/3B/4B/5B

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER

- TRIMMED OSCILLATOR FOR PRECISE FRE-QUENCY CONTROL
- OSCILLATOR FREQUENCY GUARANTEED AT 250kHz
- CURRENT MODE OPERATION TO 500kHz
- AUTOMATIC FEED FORWARD COMPENSA-TION
- LATCHING PWM FOR CYCLE-BY-CYCLE CURRENT LIMITING
- INTERNALLY TRIMMED REFERENCE WITH UNDERVOLTAGE LOCKOUT
- HIGH CURRENT TOTEM POLE OUTPUT
- UNDERVOLTAGE LOCKOUT WITH HYSTER-ESIS
- LOW START-UP AND OPERATING CURRENT


DESCRIPTION

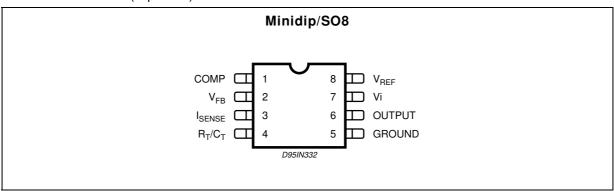
The UC384xB family of control ICs provides the necessary features to implement off-line or DC to DC fixed frequency current mode control schemes with a minimal external parts count. Internally implemented circuits include a trimmed oscillator for precise DUTY CYCLE CONTROL under voltage lockout featuring start-up current less than 0.5mA, a precision reference trimmed for accuracy at the error amp input, logic to insure latched operation, a PWM

comparator which also provides current limit control, and a totem pole output stage designed to source or sink high peak current. The output stage, suitable for driving N-Channel MOSFETs, is low in the offstate.

Differences between members of this family are the under-voltage lockout thresholds and maximum duty cycle ranges. The UC3842B and UC3844B have UVLO thresholds of 16V (on) and 10V (off), ideally suited off-line applications The corresponding thresholds for the UC3843B and UC3845B are 8.5 V and 7.9 V. The UC3842B and UC3843B can operate to duty cycles approaching 100%. A range of the zero to < 50 % is obtained by the UC3844B and UC3845B by the addition of an internal toggle flip flop which blanks the output off every other clock cycle.

BLOCK DIAGRAM (toggle flip flop used only in UC3844B and UC3845B)

March 1999 1/15


UC2842B/3B/4B/5B - UC3842B/3B/4B/5B

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vi	Supply Voltage (low impedance source)	30	V
V_i	Supply Voltage (li < 30mA)	Self Limiting	
lo	Output Current	±1	Α
Eo	Output Energy (capacitive load)	5	μЈ
	Analog Inputs (pins 2, 3)	- 0.3 to 5.5	V
	Error Amplifier Output Sink Current	10	mA
P_{tot}	Power Dissipation at T _{amb} ≤ 25 °C (Minidip)	1.25	W
P _{tot}	Power Dissipation at Tamb ≤ 25 °C (SO8)	800	mW
T _{stg}	Storage Temperature Range	- 65 to 150	°C
T_J	Junction Operating Temperature	- 40 to 150	°C
T_L	Lead Temperature (soldering 10s)	300	°C

^{*} All voltages are with respect to pin 5, all currents are positive into the specified terminal.

PIN CONNECTION (top view)

PIN FUNCTIONS

No	Function	Description
1	COMP	This pin is the Error Amplifier output and is made available for loop compensation.
2	V_{FB}	This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	I _{SENSE}	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor R_T to Vref and cpacitor C_T to ground. Operation to 500kHz is possible.
5	GROUND	This pin is the combined control circuitry and power ground.
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sunk by this pin.
7	V _{CC}	This pin is the positive supply of the control IC.
8	V_{ref}	This is the reference output. It provides charging current for capacitor C_T through resistor R_T .

ORDERING NUMBERS

SO8	Minidip
UC2842BD1; UC3842BD1	UC2842BN; UC3842BN
UC2843BD1; UC3843BD1	UC2843BN; UC3843BN
UC2844BD1; UC3844BD1	UC2844BN; UC3844BN
UC2845BD1; UC3845BD1	UC2845BN; UC3845BN

THERMAL DATA

Symbol	Description	Minidip	S08	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient. max.	100	150	°C/W

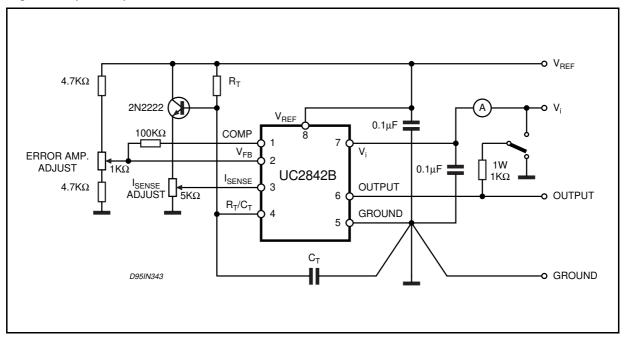
ELECTRICAL CHARACTERISTICS ([note 1] Unless otherwise stated, these specifications apply for $-25 \le T_{amb} \le 85^{\circ}C$ for UC284XB; $0 \le T_{amb} \le 70^{\circ}C$ for UC384XB; $V_i = 15V$ (note 5); $R_T = 10K$; $C_T = 3.3nF$)

Oumb at	Dawa maata w	Took Oom diking :	UC284XB			UC384XB			Heit
Symbol Parameter		Test Conditions	Min. Typ. Max			-i ı ı			Unit
REFERENC	CE SECTION								
V_{REF}	Output Voltage	$T_j = 25^{\circ}C$ $I_0 = 1mA$	4.95	5.00	5.05	4.90	5.00	5.10	V
ΔV_{REF}	Line Regulation	$12V \leq V_i \leq 25V$		2	20		2	20	mV
ΔV_{REF}	Load Regulation	$1 \leq I_0 \leq 20 mA$		3	25		3	25	mV
$\Delta V_{REF}/\Delta T$	Temperature Stability	(Note 2)		0.2			0.2		mV/°C
	Total Output Variation	Line, Load, Temperature	4.9		5.1	4.82		5.18	٧
en	Output Noise Voltage	10 Hz \leq f \leq 10 KHz $T_j = 25$ °C (note 2)		50			50		μV
	Long Term Stability	$T_{amb} = 125$ °C, 1000Hrs (note 2)		5	25		5	25	mV
I_{SC}	Output Short Circuit		-30	-100	-180	-30	-100	-180	mA
OSCILLAT	OR SECTION								
f _{OSC} Frequency		$\begin{split} T_j &= 25^{\circ}C \\ T_A &= T_{low} \text{ to } T_{high} \\ T_J &= 25^{\circ}C \text{ (R}_T = 6.2\text{k, } C_T = 1\text{nF)} \end{split}$	49 48 225	52 - 250	55 56 275	49 48 225	52 - 250	55 56 275	KHz KHz KHz
$\Delta f_{OSC}/\Delta V$	Frequency Change with Volt.	V _{CC} = 12V to 25V	_	0.2	1	-	0.2	1	%
$\Delta f_{OSC}/\Delta T$	Frequency Change with Temp.	$T_A = T_{low}$ to T_{high}	_	1	_	_	0.5	_	%
Vosc	Oscillator Voltage Swing	(peak to peak)	_	1.6	-	_	1.6	-	V
I _{dischg}	Discharge Current (V _{OSC} =2V)	$T_J = 25$ °C $T_A = T_{low}$ to T_{high}	7.8 7.5	8.3 -	8.8 8.8	7.8 7.6	8.3	8.8 8.8	mA mA
ERROR AN	MP SECTION								
V_2	Input Voltage	$V_{PIN1} = 2.5V$	2.45	2.50	2.55	2.42	2.50	2.58	V
l _b	Input Bias Current	$V_{FB} = 5V$		-0.1	-1		-0.1	-2	μΑ
	A _{VOL}	$2V \le V_0 \le 4V$	65	90		65	90		dB
BW	Unity Gain Bandwidth	$T_J = 25^{\circ}C$	0.7	1		0.7	1		MHz
PSRR	Power Supply Rejec. Ratio	$12V \leq V_i \leq 25V$	60	70		60	70		dB
l _o	Output Sink Current	$V_{PIN2} = 2.7V V_{PIN1} = 1.1V$	2	12		2	12		mA
Io	Output Source Current	$V_{PIN2} = 2.3V V_{PIN1} = 5V$	-0.5	-1		-0.5	-1		mA
	V _{OUT} High	$V_{PIN2} = 2.3V$; $R_L = 15K\Omega$ to Ground	5	6.2		5	6.2		V
	V _{OUT} Low	$V_{PIN2} = 2.7V;$ $R_L = 15K\Omega$ to Pin 8		8.0	1.1		8.0	1.1	V
CURRENT	SENSE SECTION								
G _V	Gain	(note 3 & 4)	2.85	3	3.15	2.85	3	3.15	V/V
V ₃	Maximum Input Signal	$V_{PIN1} = 5V \text{ (note 3)}$	0.9	1	1.1	0.9	1	1.1	V
SVR	Supply Voltage Rejection	$12 \leq V_i \leq 25V \text{ (note 3)}$		70			70		dB
l _b	Input Bias Current			-2	-10		-2	-10	μΑ
	Delay to Output			150	300		150	300	ns

UC2842B/3B/4B/5B - UC3842B/3B/4B/5B

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	UC284XB			UC384XB			Unit
- i didiliotol		rest conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Oiii
OUTPUT S	SECTION								
V_{OL}	Output Low Level	I _{SINK} = 20mA		0.1	0.4		0.1	0.4	٧
		I _{SINK} = 200mA		1.6	2.2		1.6	2.2	V
V_{OH}	Output High Level	I _{SOURCE} = 20mA	13	13.5		13	13.5		V
		I _{SOURCE} = 200mA	12	13.5		12	13.5		V
V_{OLS}	UVLO Saturation	VCC = 6V; I _{SINK} = 1mA		0.1	1.1		0.1	1.1	V
t _r	Rise Time	$T_j = 25^{\circ}C C_L = 1nF (2)$		50	150		50	150	ns
t _f	Fall Time	$T_j = 25^{\circ}C C_L = 1nF (2)$		50	150		50	150	ns
UNDER-VO	OLTAGE LOCKOUT SECTION	N							
	Start Threshold	X842B/4B	15	16	17	14.5	16	17.5	V
		X843B/5B	7.8	8.4	9.0	7.8	8.4	9.0	V
	Min Operating Voltage	X842B/4B	9	10	11	8.5	10	11.5	V
	After Turn-on	X843B/5B	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM SEC	TION								
	Maximum Duty Cycle	X842B/3B	94	96	100	94	96	100	%
		X844B/5B	47	48	50	47	48	50	%
	Minimum Duty Cycle				0			0	%
TOTAL ST	ANDBY CURRENT								
I _{st}	Start-up Current	$V_i = 6.5V \text{ for } UCX843B/45B$		0.3	0.5		0.3	0.5	mA
		$V_i = 14V$ for UCX842B/44B		0.3	0.5		0.3	0.5	mA
li	Operating Supply Current	$V_{PIN2} = V_{PIN3} = 0V$		12	17		12	17	mA
V_{iz}	Zener Voltage	$I_i = 25mA$	30	36		30	36		V


Notes: 1. Max package power dissipation limits must be respected; low duty cycle pulse techniques are used during test maintain T_j as close to T_{amb} as possible.
2. These parameters, although guaranteed, are not 100% tested in production.
3. Parameter measured at trip point of latch with V_{PIN2} = 0.
4. Gain defined as:

$$A = \frac{\Delta V_{PIN1}}{\Delta V_{PIN3}} \quad ; 0 \le V_{PIN3} \le 0.8 \text{ V}$$

5. Adjust V_i above the start threshold before setting at 15 V.

4

Figure 1: Open Loop Test Circuit.

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and $5\,\mathrm{K}\Omega$ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Figure 2: Timing Resistor vs. Oscillator Frequency

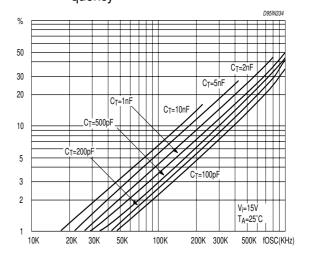
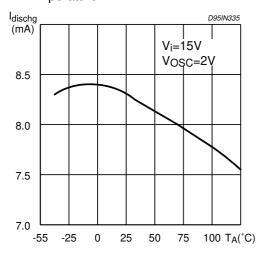
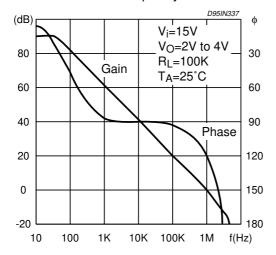
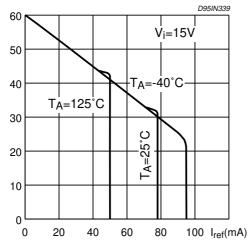
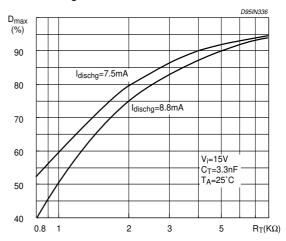




Figure 3: Output Dead-Time vs. Oscillator Frequency



57


Figure 4: Oscillator Discharge Current vs. Temperature.


Figure 6: Error Amp Open-Loop Gain and Phase vs. Frequency.

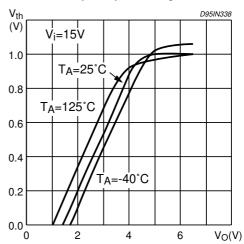

Figure 8: Reference Voltage Change vs. Source Current.

Figure 5: Maximum Output Duty Cycle vs. Timing Resistor.

Figure 7: Current Sense Input Threshold vs. Error Amp Output Voltage.

Figure 9: Reference Short Circuit Current vs. Temperature.

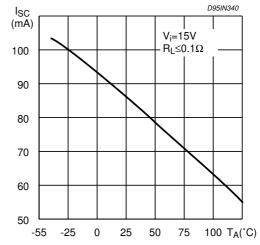


Figure 11: Supply Current vs. Supply Voltage.

Figure 10: Output Saturation Voltagevs. Load Current.

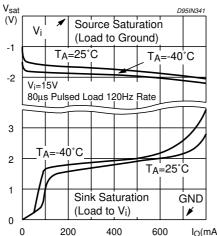
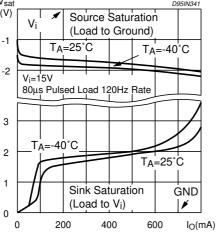



Figure 12: Output Waveform.

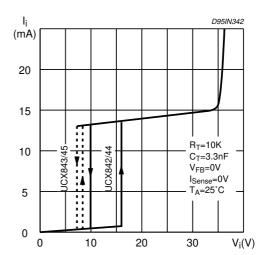


Figure 13: Output Cross Conduction

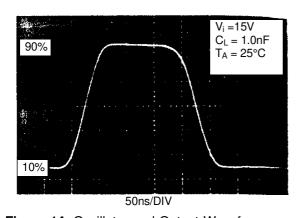
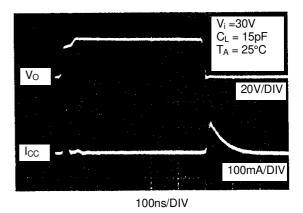



Figure 14: Oscillator and Output Waveforms.

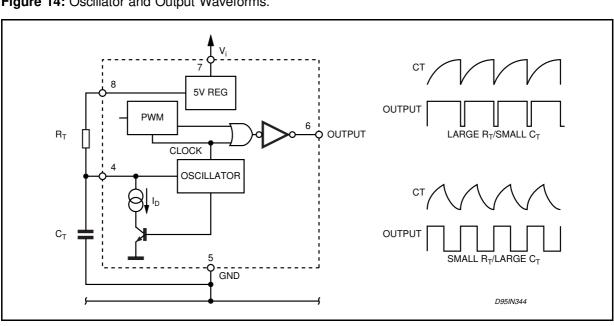


Figure 15: Error Amp Configuration.

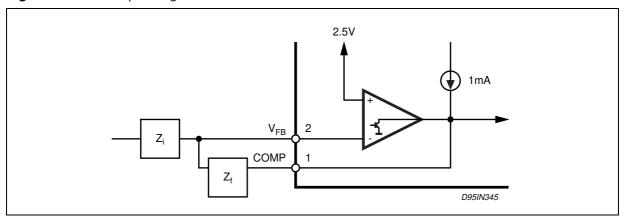


Figure 16: Under Voltage Lockout.

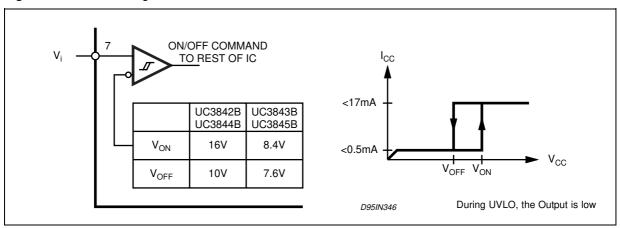
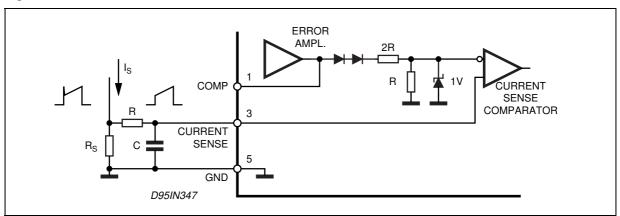



Figure 17: Current Sense Circuit.

Peak current (is) is determined by the formula

$$I_{S \text{ max}} \approx \frac{1.0 \text{ V}}{\text{Rs}}$$

A small RC filter may be required to suppress switch transients.

Figure 18: Slope Compensation Techniques.

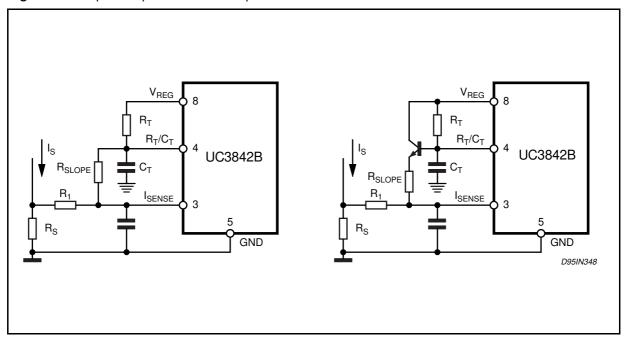


Figure 19: Isolated MOSFET Drive and Current Transformer Sensing.

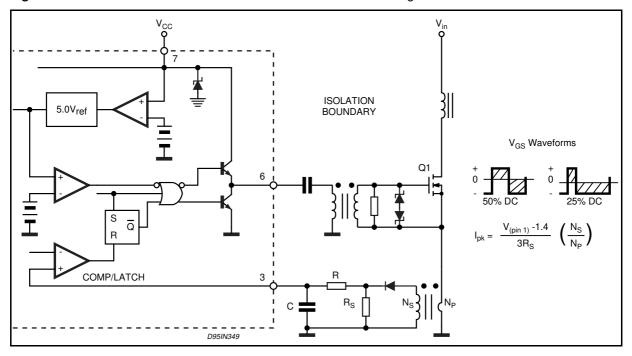


Figure 20: Latched Shutdown.

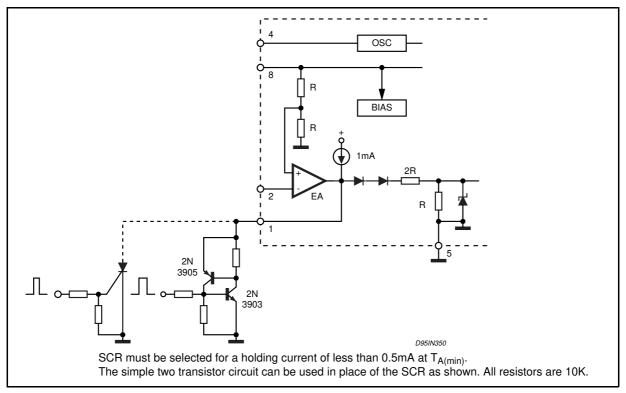


Figure 21: Error Amplifier Compensation

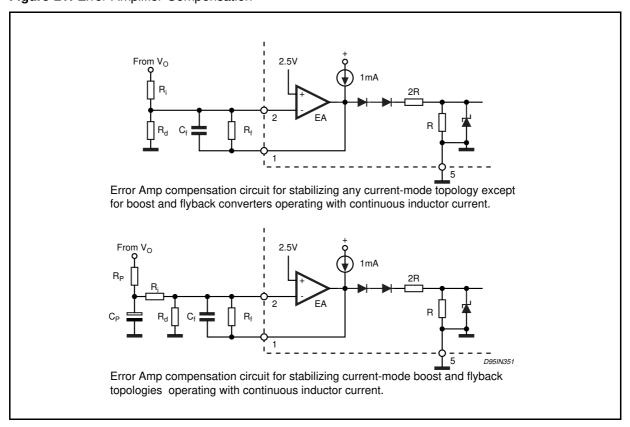


Figure 22: External Clock Synchronization.

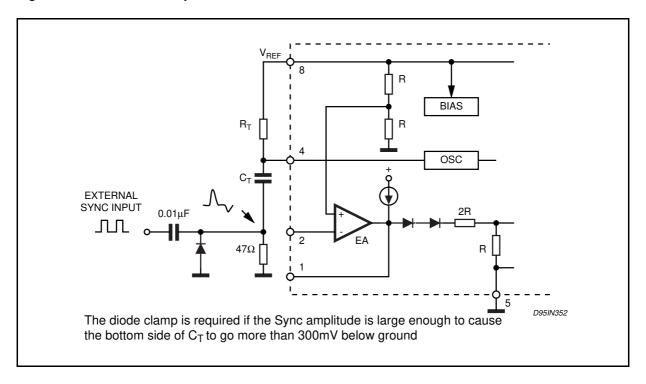


Figure 23: External Duty Cycle Clamp and Multi Unit Synchronization.

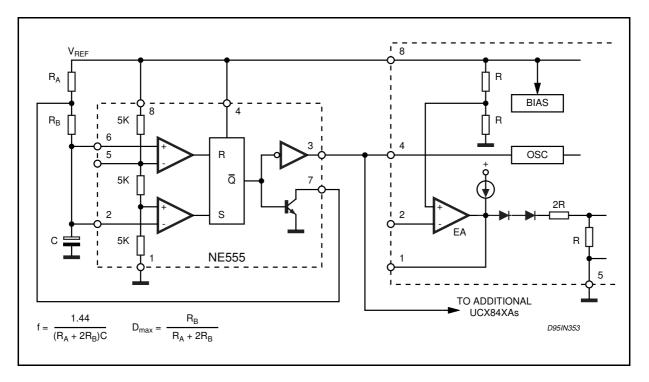


Figure 24: Soft-Start Circuit

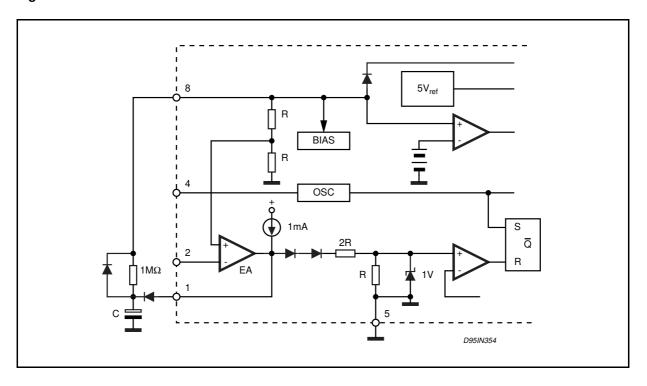
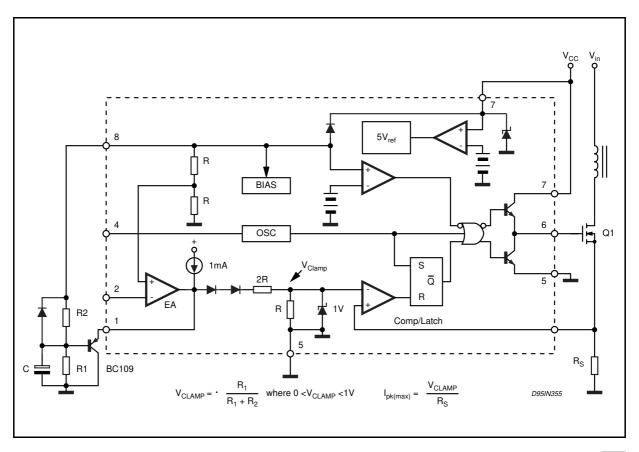
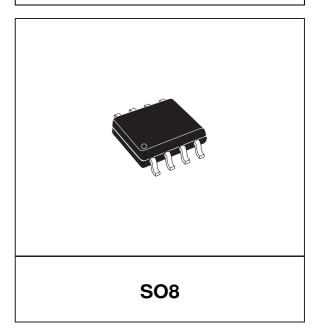
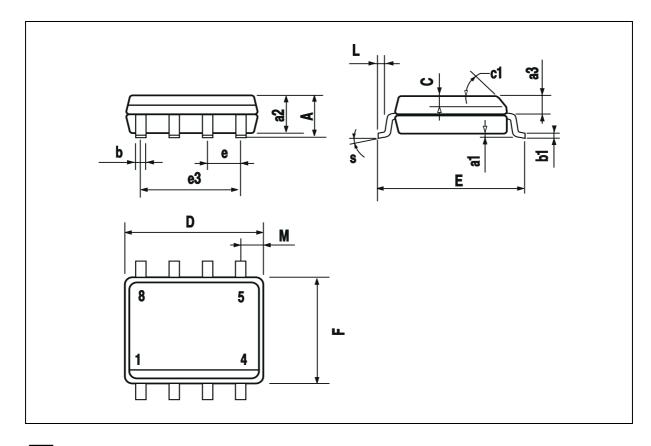
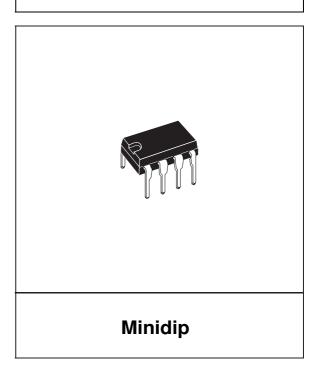




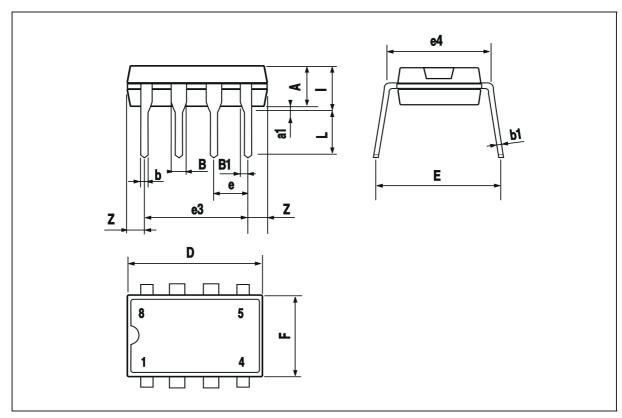
Figure 25: Soft-Start and Error Amplifier Output Duty Cycle Clamp.



DIM.		mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.069		
a1	0.1		0.25	0.004		0.010		
a2			1.65			0.065		
аЗ	0.65		0.85	0.026		0.033		
b	0.35		0.48	0.014		0.019		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.020		
c1			45° ((typ.)				
D (1)	4.8		5.0	0.189		0.197		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F (1)	3.8		4.0	0.15		0.157		
L	0.4		1.27	0.016		0.050		
М			0.6			0.024		
S	8° (max.)							

OUTLINE AND MECHANICAL DATA




⁽¹⁾ D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

DIM.	mm			inch			
Din.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

