

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER

NOT FOR NEW DESIGN

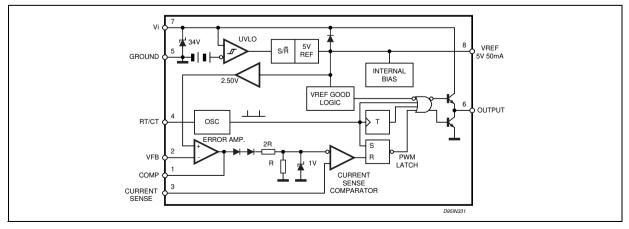
#### 1 FEATURES

- TRIMMED OSCILLATOR DISCHARGE CURRENT
- CURRENT MODE OPERATION TO 500kHz AUTOMATIC FEED FORWARD COMPENSATION
- LATCHING PWM FOR CYCLE-BY-CYCLE CURRENT LIMITING
- INTERNALLY TRIMMED REFERENCE WITH UNDERVOLTAGE LOCKOUT
- HIGH CURRENT TOTEM POLE OUTPUT UNDERVOLTAGE LOCKOUT WITH HYSTERESIS
- LOW START-UP CURRENT (< 0.5mA)
  DOUBLE PULSE SUPPRESSION

#### 2 DESCRIPTION

The UC384xA family of control ICs provides the necessary features to implement off-line or DC to DC fixed frequency current mode control schemes with a minimal external parts count. Internally implemented circuits include a trimmed oscillator for precise DUTY CYCLE CONTROL under voltage lockout featuring start-up current less than 0.5mA, a precision reference trimmed for accuracy at the error amp input, logic to insure latched operation, a PWM comparator which also provides current limit control, and a totem pole output stage designed to source or sink high peak current. The output stage, suitable for driving N-Channel MOS-FETs, is low in the off-state.

Figure 1. Package



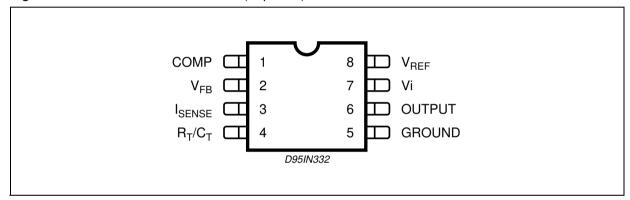

**Table 1. Order Codes** 

| Part Number                                                                                     | Package |
|-------------------------------------------------------------------------------------------------|---------|
| UC2842AD1; UC3842AD1;<br>UC2843AD1; UC3843AD1;<br>UC2844AD1; UC3844AD1;<br>UC2845AD1; UC3845AD1 | SO-8    |
| UC2842AN; UC3842AN;<br>UC2843AN; UC3843AN;<br>UC2844AN; UC3844AN;<br>UC2845AN; UC3845AN         | DIP-8   |

Differences between members of this family are the under-voltage lockout thresholds and maximum duty cycle ranges. The UC3842A and UC3844A have UVLO thresholds of 16V (on) and 10V (off), ideally suited off-line applications The corresponding thresholds for the UC3843A and UC3845A are 8.5 V and 7.9V. The UC3842A and UC3843A can operate to duty cycles approaching 100%. A range of the zero to < 50 % is obtained by the UC3844A and UC3845A by the addition of an internal toggle flip flop which blanks the output off every other clock cycle.

Figure 2. Block Diagram (toggle flip flop used only in UC3844A and UC3845A)




May 2004 1/16

**Table 2. Absolute Maximum Ratings** 

| Symbol           | Parameter                                             | Value         | Unit |
|------------------|-------------------------------------------------------|---------------|------|
| Vi               | Supply Voltage (low impedance source)                 | 30            | V    |
| Vi               | Supply Voltage (li < 30mA)                            | Self Limiting |      |
| I <sub>O</sub>   | Output Current                                        | ±1            | Α    |
| Eo               | Output Energy (capacitive load)                       | 5             | μJ   |
|                  | Analog Inputs (pins 2, 3)                             | - 0.3 to 5.5  | V    |
|                  | Error Amplifier Output Sink Current                   | 10            | mA   |
| P <sub>tot</sub> | Power Dissipation at T <sub>amb</sub> ≤ 25 °C (DIP-8) | 1.25          | W    |
| P <sub>tot</sub> | Power Dissipation at T <sub>amb</sub> ≤ 25 °C (SO-8)  | 800           | mW   |
| T <sub>stg</sub> | Storage Temperature Range                             | - 65 to 150   | °C   |
| TJ               | Junction Operating Temperature                        | - 40 to 150   | °C   |
| TL               | Lead Temperature (soldering 10s)                      | 300           | °C   |

<sup>\*</sup> All voltages are with respect to pin 5, all currents are positive into the specified terminal.

Figure 3. DIP-8/SO-8 Pin Connection (Top view)



**Table 3. Pin Description** 

| N° | Pin                            | Function                                                                                                                                                                       |
|----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | COMP                           | This pin is the Error Amplifier output and is made available for loop compensation.                                                                                            |
| 2  | V <sub>FB</sub>                | This is the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.                                  |
| 3  | I <sub>SENSE</sub>             | A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.                                |
| 4  | R <sub>T</sub> /C <sub>T</sub> | The oscillator frequency and maximum Output duty cycle are programmed by connecting resistor $R_T$ to $V_{ref}$ and cpacitor $C_T$ to ground. Operation to 500kHz is possible. |
| 5  | GROUND                         | This pin is the combined control circuitry and power ground.                                                                                                                   |
| 6  | OUTPUT                         | This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sunk by this pin.                                                               |
| 7  | V <sub>CC</sub>                | This pin is the positive supply of the control IC.                                                                                                                             |
| 8  | V <sub>ref</sub>               | This is the reference output. It provides charging current for capacitor C <sub>T</sub> through resistor R <sub>T</sub> .                                                      |

2/16

**Table 4. Thermal Data** 

| Symbol                | Parameter                                | DIP-8 | SO-8 | Unit |
|-----------------------|------------------------------------------|-------|------|------|
| R <sub>th j-amb</sub> | Thermal Resistance Junction-ambient Max. | 100   | 150  | °C/W |

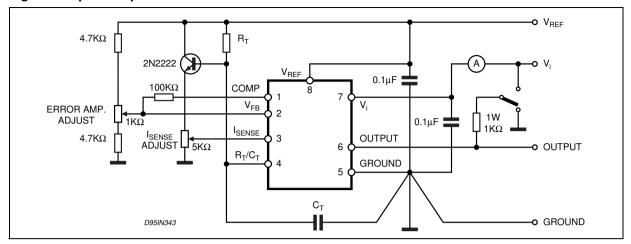
#### **Table 5. Electrical Characteristcs**

( [note 1] Unless otherwise stated, these specifications apply for -25 <  $T_{amb}$  < 85°C for UC284XA; 0 <  $T_{amb}$  < 70°C for UC384XA;  $V_i$  = 15V (note 5);  $R_T$  = 10K;  $C_T$  = 3.3nF)

|                           |                                          | To all Consultations                                                                                                             | U    | C284X | Α    | U    | C384X | Α    | Hait  |
|---------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------|-------|------|------|-------|------|-------|
| Symbol                    | Parameter                                | Test Condition                                                                                                                   | Min. | Тур.  | Max. | Min. | Тур.  | Max. | Unit  |
| REFEREN                   | NCE SECTION                              |                                                                                                                                  |      | •     | •    | •    | •     | •    | •     |
| V <sub>REF</sub>          | Output Voltage                           | $T_j = 25$ °C $I_0 = 1$ mA                                                                                                       | 4.95 | 5.00  | 5.05 | 4.90 | 5.00  | 5.10 | V     |
| $\Delta V_{REF}$          | Line Regulation                          | $12V \leq V_i \leq 25V$                                                                                                          |      | 2     | 20   |      | 2     | 20   | mV    |
| $\Delta V_{REF}$          | Load Regulation                          | $1 \leq I_0 \leq 20 mA$                                                                                                          |      | 3     | 25   |      | 3     | 25   | mV    |
| $\Delta V_{REF}/\Delta T$ | Temperature Stability                    | (Note 2)                                                                                                                         |      | 0.2   |      |      | 0.2   |      | mV/°C |
|                           | Total Output Variation                   | Line, Load, Temperature                                                                                                          | 4.9  |       | 5.1  | 4.82 |       | 5.18 | V     |
| e <sub>N</sub>            | Output Noise Voltage                     | $\begin{array}{l} 10 \text{Hz} \leq \text{f} \leq 10 \text{KHz} \\ \text{T}_j = 25^{\circ}\text{C} \text{ (note 2)} \end{array}$ |      | 50    |      |      | 50    |      | μV    |
|                           | Long Term Stability                      | Tamb = 125°C, 1000Hrs (note 2)                                                                                                   |      | 5     | 25   |      | 5     | 25   | mV    |
| Isc                       | Output Short Circuit                     |                                                                                                                                  | -30  | -100  | -180 | -30  | -100  | -180 | mA    |
| OSCILLA                   | TOR SECTION                              |                                                                                                                                  | ı    | I     | I    | I    | I     | I    | I     |
| fosc                      | Frequency                                | T <sub>j</sub> = 25°C                                                                                                            | 47   | 52    | 57   | 47   | 52    | 57   | KHz   |
| Δf <sub>OSC</sub> /ΔV     | Frequency Change with Volt.              | V <sub>CC</sub> = 12V to 25V                                                                                                     | _    | 0.2   | 1    | _    | 0.2   | 1    | %     |
| $\Delta V_{REF}/\Delta T$ | Frequency Change with Temp.              | $T_A = T_{low}$ to $T_{high}$                                                                                                    | _    | 5     | _    | _    | 5     | _    | %     |
| Vosc                      | Oscillator Voltage Swing                 | (peak to peak)                                                                                                                   | _    | 1.6   | _    | _    | 1.6   | _    | V     |
| I <sub>dischg</sub>       | Discharge Current (V <sub>OSC</sub> =2V) | T <sub>J</sub> = 25°C                                                                                                            | 7.8  | 8.3   | 8.8  | 7.8  | 8.3   | 8.8  | mA    |
| ERROR A                   | MP SECTION                               |                                                                                                                                  | •    |       |      |      |       | ,    |       |
| V <sub>2</sub>            | Input Voltage                            | V <sub>PIN1</sub> = 2.5V                                                                                                         | 2.45 | 2.50  | 2.55 | 2.42 | 2.50  | 2.58 | ٧     |
| I <sub>b</sub>            | Input Bias Current                       | V <sub>FB</sub> = 5V                                                                                                             |      | -0.1  | -1   |      | -0.1  | -2   | μΑ    |
|                           | A <sub>VOL</sub>                         | $2V \le V_0 \le 4V$                                                                                                              | 65   | 90    |      | 65   | 90    |      | dB    |
| BW                        | Unity Gain Bandwidth                     | T <sub>J</sub> = 25°C                                                                                                            | 0.7  | 1     |      | 0.7  | 1     |      | MHz   |
| PSRR                      | Power Supply Rejec. Ratio                | $12V \leq V_i \leq 25V$                                                                                                          | 60   | 70    |      | 60   | 70    |      | dB    |
| lo                        | Output Sink Current                      | V <sub>PIN2</sub> = 2.7V<br>V <sub>PIN1</sub> = 1.1V                                                                             | 2    | 12    |      | 2    | 12    |      | mA    |
| Io                        | Output Source Current                    | V <sub>PIN2</sub> = 2.3V V <sub>PIN1</sub> = 5V                                                                                  | -0.5 | -1    |      | -0.5 | -1    |      | mA    |
|                           | V <sub>OUT</sub> High                    | $V_{PIN2}$ = 2.3V; $R_L$ = 15K $\Omega$ to Ground                                                                                | 5    | 6.2   |      | 5    | 6.2   |      | V     |
|                           | V <sub>OUT</sub> Low                     | $V_{PIN2}$ = 2.7V; $R_L$ = 15K $\Omega$ to Pin 8                                                                                 |      | 0.8   | 1.1  |      | 0.8   | 1.1  | V     |
| CURREN                    | T SENSE SECTION                          |                                                                                                                                  |      | ı     | ı    | ı    | ı     | l    | ı     |
| Gv                        | Gain                                     | (note 3 & 4)                                                                                                                     | 2.85 | 3     | 3.15 | 2.85 | 3     | 3.15 | V/V   |
| V <sub>3</sub>            | Maximum Input Signal                     | V <sub>PIN1</sub> = 5V (note 3)                                                                                                  | 0.9  | 1     | 1.1  | 0.9  | 1     | 1.1  | V     |
| SVR                       | Supply Voltage Rejection                 | $12 \le V_i \le 25V \text{ (note 3)}$                                                                                            |      | 70    |      |      | 70    |      | dB    |
| l <sub>b</sub>            | Input Bias Current                       |                                                                                                                                  |      | -2    | -10  |      | -2    | -10  | μΑ    |
|                           | Delay to Output                          |                                                                                                                                  |      | 150   | 300  |      | 150   | 300  | ns    |



### Table 5. Electrical Characteristcs (continued)


( [note 1] Unless otherwise stated, these specifications apply for -25 <  $T_{amb}$  < 85°C for UC284XA; 0 <  $T_{amb}$  < 70°C for UC384XA;  $V_i$  = 15V (note 5);  $R_T$  = 10K;  $C_T$  = 3.3nF)

| Symbol           | Parameter                              | Test Condition                            | U    | C284X | Ά    | UC384XA |      |      | Unit  |  |
|------------------|----------------------------------------|-------------------------------------------|------|-------|------|---------|------|------|-------|--|
| Syllibol         | Farameter                              | rest Condition                            | Min. | Тур.  | Max. | Min.    | Тур. | Max. | Ullit |  |
| OUTPUT           | OUTPUT SECTION                         |                                           |      |       |      |         |      |      |       |  |
| V <sub>OL</sub>  | Output Low Level                       | I <sub>SINK</sub> = 20mA                  |      | 0.1   | 0.4  |         | 0.1  | 0.4  | V     |  |
|                  |                                        | I <sub>SINK</sub> = 200mA                 |      | 1.6   | 2.2  |         | 1.6  | 2.2  | V     |  |
| V <sub>OH</sub>  | Output High Level                      | I <sub>SOURCE</sub> = 20mA                | 13   | 13.5  |      | 13      | 13.5 |      | V     |  |
|                  |                                        | I <sub>SOURCE</sub> = 200mA               | 12   | 13.5  |      | 12      | 13.5 |      | V     |  |
| V <sub>OLS</sub> | UVLO Saturation                        | V <sub>CC</sub> = 6V; I<br>SINK = 1mA     |      | 0.7   | 1.2  |         | 0.7  | 1.2  | V     |  |
| t <sub>r</sub>   | Rise Time                              | $T_j = 25^{\circ}C$ $C_L = 1nF^{(2)}$     |      | 50    | 150  |         | 50   | 150  | ns    |  |
| t <sub>f</sub>   | Fall Time                              | $T_j = 25$ °C $C_L = 1$ nF $^{(2)}$       |      | 50    | 150  |         | 50   | 150  | ns    |  |
| UNDER-V          | UNDER-VOLTAGE LOCKOUT SECTION          |                                           |      |       |      |         |      |      |       |  |
|                  | Start Threshold                        | X842A/4A                                  | 15   | 16    | 17   | 14.5    | 16   | 17.5 | V     |  |
|                  |                                        | X843A/5A                                  | 7.8  | 8.4   | 9.0  | 7.8     | 8.4  | 9.0  | V     |  |
|                  | Min Operating Voltage<br>After Turn-on | X842A/4A                                  | 9    | 10    | 11   | 8.5     | 10   | 11.5 | V     |  |
| PWM SEC          | CTION                                  |                                           |      | •     | •    | •       |      | •    |       |  |
|                  | Maximum Duty Cycle                     | X842A/3A                                  | 94   | 96    | 100  | 94      | 96   | 100  | %     |  |
|                  |                                        | X844A/5A                                  | 47   | 48    | 50   | 47      | 48   | 50   | %     |  |
|                  | Minimum Duty Cycle                     |                                           |      |       | 0    |         |      | 0    | %     |  |
| TOTAL S          | TOTAL STANDBY CURRENT                  |                                           |      |       |      |         |      |      |       |  |
| I <sub>st</sub>  | Start-up Current                       | V <sub>i</sub> = 6.5V for UCX843A/<br>45A |      | 0.3   | 0.5  |         | 0.3  | 0.5  | mA    |  |
|                  |                                        | V <sub>i</sub> = 14V for UCX842A/44A      |      | 0.3   | 0.5  |         | 0.3  | 0.5  | mA    |  |
| li               | Operating Supply Current               | $V_{PIN2} = V_{PIN3} = 0V$                |      | 12    | 17   |         | 12   | 17   | mA    |  |
| V <sub>iz</sub>  | Zener Voltage                          | I <sub>i</sub> = 25mA                     | 30   | 36    |      | 30      | 36   |      | V     |  |

Notes: 1. Max package power dissipation limits must be respected; low duty cycle pulse techniques are used during test maintain T<sub>j</sub> as close to T<sub>amb</sub> as possible.

- 2. These parameters, although guaranteed, are not 100% tested in production.
- 3. Parameter measured at trip point of latch with  $V_{PIN2} = 0$ .
- 4. Gain defined as : A =  $\Delta V_{PIN1}/\Delta V_{PIN3}$ ;  $0 \le V_{PIN3} \le 0.8V$
- 5. Adjust V<sub>i</sub> above the start threshold before setting at 15 V.

Figure 4. Open Loop Test Circuit.



High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5 K $\Omega$  potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Figure 5. Oscillator Frequency vs Timing Resistance

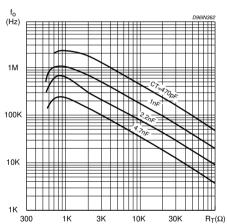



Figure 6. Maximum Duty Cycle vs Timing Resistor

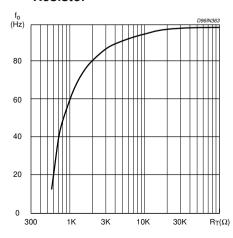



Figure 7. Oscillator Discharge Current vs. Temperature.




Figure 8. Error Amp Open-Loop Gain and Phase vs. Frequency.

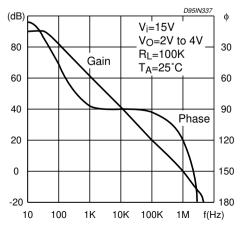



Figure 9. Current Sense Input Threshold vs. Error Amp Output Voltage.

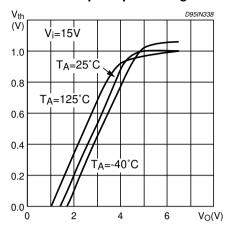



Figure 10. Reference Voltage Change vs. Source Current..

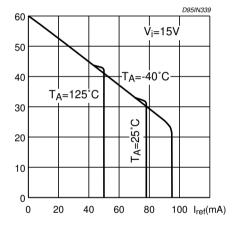



Figure 11. Reference Short Circuit Current vs. Temperature..

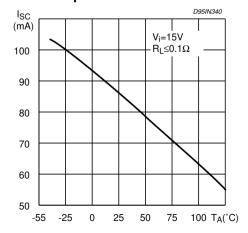



Figure 12. Output Saturation Voltage vs. Load Current.

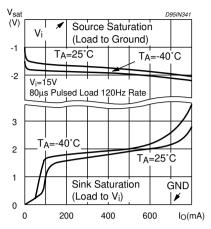
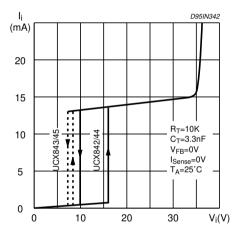
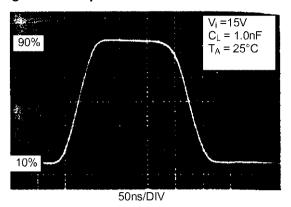





Figure 13. Supply Current vs. Supply Voltage.



6/16

Figure 14. Output Waveform.



**Figure 15. Output Cross Conduction** 

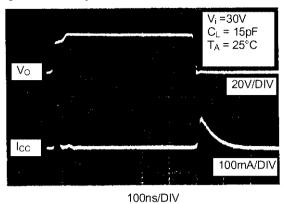



Figure 16. Oscillator and Output Waveforms.

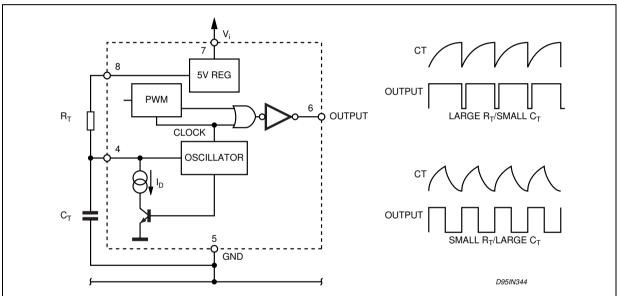



Figure 17. Error Amp Configuration.

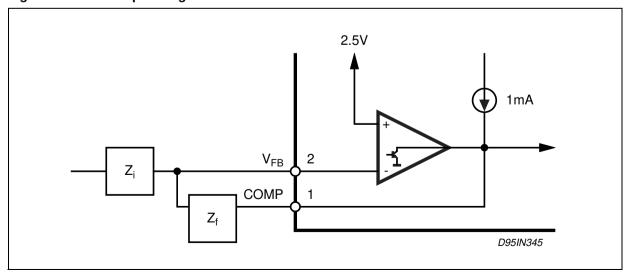





Figure 18. Under Voltage Lockout.

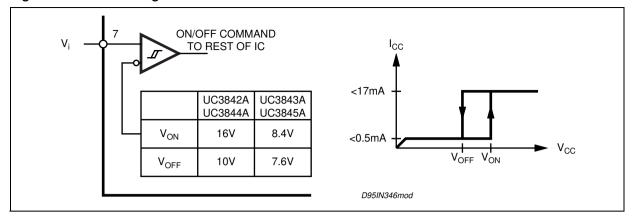
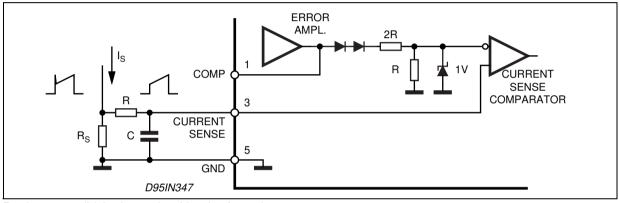
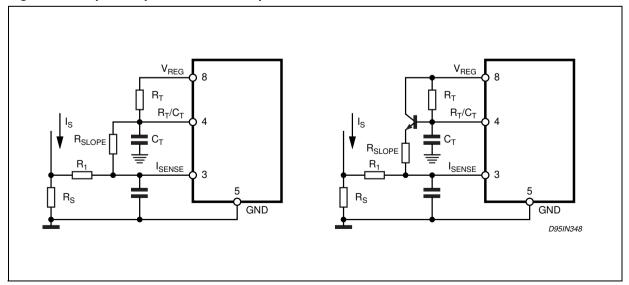




Figure 19. Current Sense Circuit.




Peak current (is) is determined by the formula

$$I_{Smax} \approx \frac{1.0V}{R_S}$$

A small RC filter may be required to suppress switch transients.

Figure 20. Slope Compensation Techniques.



8/16

Figure 21. Isolated MOSFET Drive and Current Transformer Sensing.

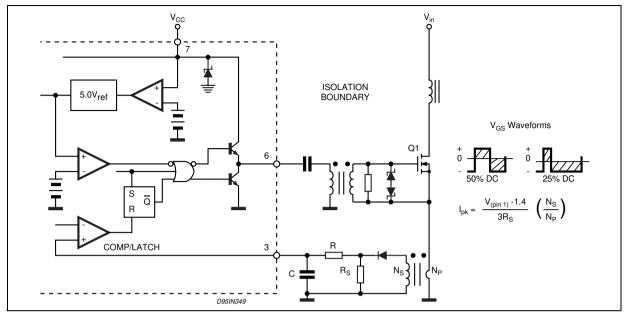



Figure 22. Latched Shutdown.

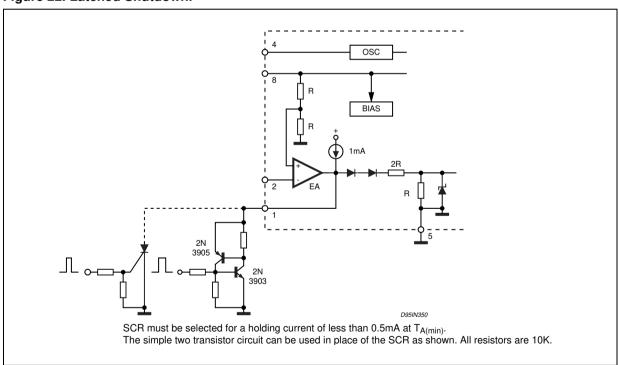



Figure 23. Error Amplifier Compensation

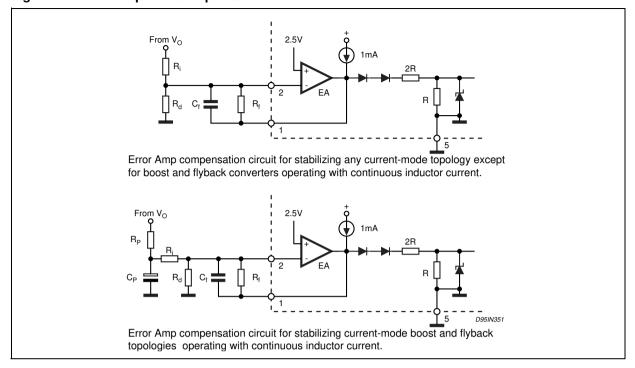



Figure 24. External Clock Synchronization.

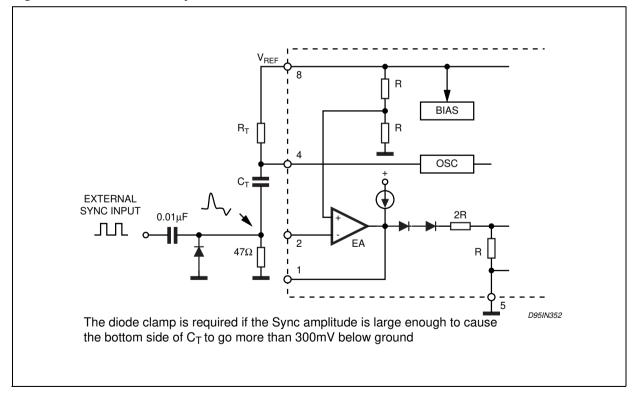



Figure 25. External Duty Cycle Clamp and Multi Unit Synchronization.

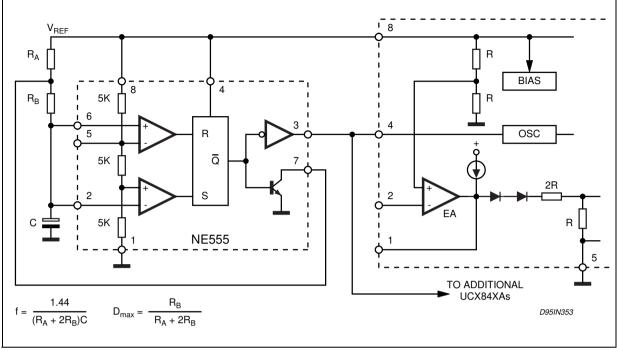



Figure 26. Soft-Start Circuit

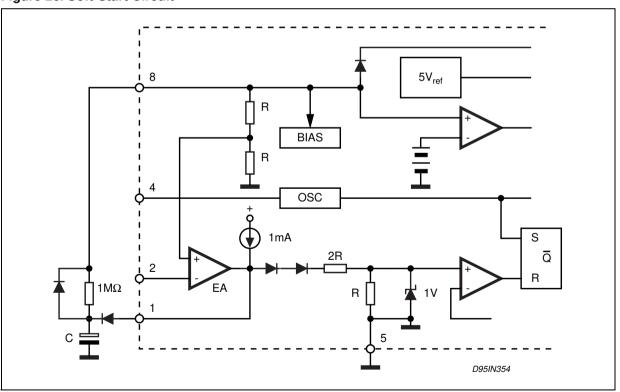
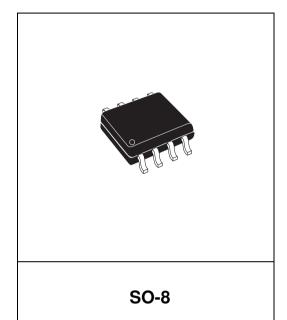



Figure 27. Soft-Start and Error Amplifier Output Duty Cycle Clamp.




Figure 28. SO-8 Mechanical Data & Package Dimensions

| DIM.  | mm                   |      |      |       | inch  |       |  |
|-------|----------------------|------|------|-------|-------|-------|--|
| DIW.  | MIN.                 | TYP. | MAX. | MIN.  | TYP.  | MAX.  |  |
| Α     | 1.35                 |      | 1.75 | 0.053 |       | 0.069 |  |
| A1    | 0.10                 |      | 0.25 | 0.004 |       | 0.010 |  |
| A2    | 1.10                 |      | 1.65 | 0.043 |       | 0.065 |  |
| В     | 0.33                 |      | 0.51 | 0.013 |       | 0.020 |  |
| С     | 0.19                 |      | 0.25 | 0.007 |       | 0.010 |  |
| D (1) | 4.80                 |      | 5.00 | 0.189 |       | 0.197 |  |
| Е     | 3.80                 |      | 4.00 | 0.15  |       | 0.157 |  |
| е     |                      | 1.27 |      |       | 0.050 |       |  |
| Н     | 5.80                 |      | 6.20 | 0.228 |       | 0.244 |  |
| h     | 0.25                 |      | 0.50 | 0.010 |       | 0.020 |  |
| L     | 0.40                 |      | 1.27 | 0.016 |       | 0.050 |  |
| k     | 0° (min.), 8° (max.) |      |      |       |       |       |  |
| ddd   |                      |      | 0.10 |       |       | 0.004 |  |

Note: (1) Dimensions D does not include mold flash, protrusions or gate burrs.

Mold flash, potrusions or gate burrs shall not exceed 0.15mm (.006inch) in total (both side).

# **OUTLINE AND MECHANICAL DATA**



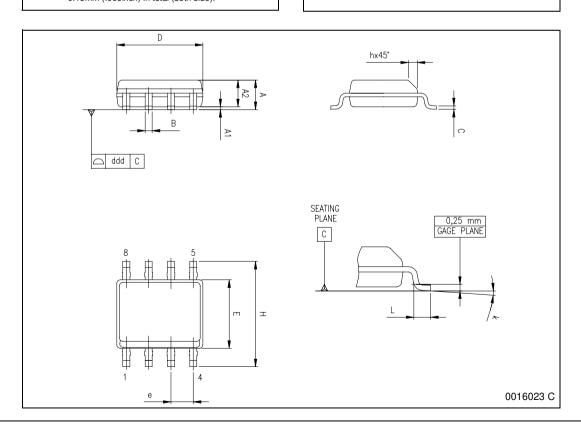
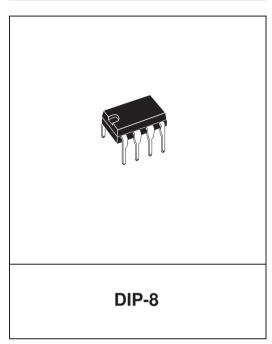
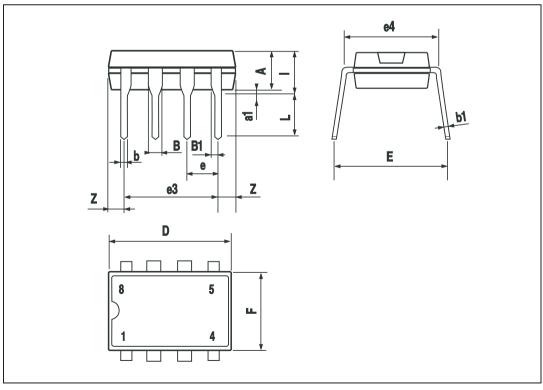





Figure 29. DIP-8 Mechanical Data & Package Dimensions

| DIM.  | mm    |      |       |       | inch  |       |
|-------|-------|------|-------|-------|-------|-------|
| DINI. | MIN.  | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |
| Α     |       | 3.32 |       |       | 0.131 |       |
| a1    | 0.51  |      |       | 0.020 |       |       |
| В     | 1.15  |      | 1.65  | 0.045 |       | 0.065 |
| b     | 0.356 |      | 0.55  | 0.014 |       | 0.022 |
| b1    | 0.204 |      | 0.304 | 0.008 |       | 0.012 |
| D     |       |      | 10.92 |       |       | 0.430 |
| Е     | 7.95  |      | 9.75  | 0.313 |       | 0.384 |
| е     |       | 2.54 |       |       | 0.100 |       |
| e3    |       | 7.62 |       |       | 0.300 |       |
| e4    |       | 7.62 |       |       | 0.300 |       |
| F     |       |      | 6.6   |       |       | 0.260 |
| I     |       |      | 5.08  |       |       | 0.200 |
| L     | 3.18  |      | 3.81  | 0.125 |       | 0.150 |
| Z     |       |      | 1.52  |       |       | 0.060 |

# OUTLINE AND MECHANICAL DATA





# **Table 6. Revision History**

| Date       | Revision | Description of Changes |
|------------|----------|------------------------|
| March 1999 | 4        | First Issue in EDOCS   |
| May 2004   | 5        | NOT FOR NEW DESIGN     |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

#### STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

