imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

AC-DC Power Supplies

180 Watts

- Low 1.18" Profile U Channel Construction
- -40 °C to +70 °C Operation
- 2.5" by 4.3" Footprint
- 120 W Convection/ 180 W Forced Cooled Ratings
- 12 V Fan Output
- Medical and ITE Approvals
- High Efficiency, up to 95%
- Less than 0.5 W No Load Input Power

The UCP180 series is designed to minimize the no load power consumption and maximize efficiency to facilitate equipment design to meet the latest environmental legislation. Approved for medical and ITE applications, this range of single output AC/DC power supplies are packaged in an ultra-low profile 1.18" height with a foot print of just 2.5" by 4.3". The UCP180 provides up to 180 W force-cooled or 120 W convection-cooled leading to very high power densities of 14.2 W/in³ or 9.4 W/in³

Dimensions:

UCP180: 4.24 × 2.47 × 1.16" (107.6 × 62.8 × 29.5 mm) UCP180-C: 4.24 × 2.47 × 1.40" (107.6 × 62.8 × 35.5 mm)

respectively. A 12 V, 500 mA fan supply is included in the design. The power supply contains two fuses and low leakage currents as required by medical applications and is safety approved to operate in a 70 °C ambient. The low profile and safety approvals covering ITE and medical standards along with conducted emissions to EN55011/32 level B allow the versatile UCP180 series to be used in a vast range of applications.

Output	Output	Output Current		Efficiency	Model Number ^(3, 4)
Voltage	Convection-cooled	Forced-cooled ⁽¹⁾	- Fan Output	Linciency	
12.0 V	10.00 A	15.00 A	12 V/0.5 A	92%	UCP180PS12
15.0 V	8.00 A	12.00 A	12 V/0.5 A	92%	UCP180PS15
18.0 V	6.67 A	10.00 A	12 V/0.5 A	92%	UCP180PS18
24.0 V	5.00 A	7.50 A	12 V/0.5 A	92%	UCP180PS24
28.0 V	4.30 A	6.43 A	12 V/0.5 A	92%	UCP180PS28
36.0 V	3.33 A	5.00 A	12 V/0.5 A	92%	UCP180PS36
48.0 V	2.5 A	3.75 A	12 V/0.5 A	92%	UCP180PS48

Notes

1. Requires 10 CFM

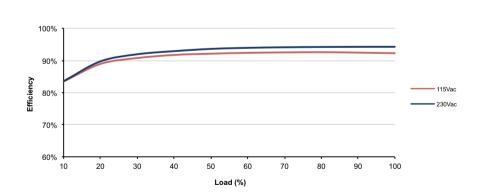
2. Minimum average efficiencies measured at 25%, 50%, 75% & 100% of 225 W load and 230 VAC input

3. Add suffix -T for input and output screw terminals e.g. UCP180PS24-T 4. Add suffix -C for vented cover version e.g. UCP180PS24-C

Input Units Minimum Maximum Notes & Conditions Characteristic Typical 85 115/230 264 VAC Derate output from 100% at 85 VAC to 90% at 85 VAC Input Voltage - Operating 47 50/60 63 Hz Input Frequency 230 VAC, 100% load. EN61000-3-2 class A Power Factor >0.9 Input Current - Full Load 2.2/1.1 115/230 VAC Α 120 Inrush Current Α 230 VAC cold start, 25 °C 230 115/230 VAC/50 Hz (Typ), 264 VAC/60 Hz (Max) Earth Leakage Current 80/140 μA W No load Input Power 0.5 Input Protection F3.15 A/250 V Internal fuse fitted in line and neutral.

Output - Main Output

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Output Voltage - V1	12		48	VDC	See Models and Ratings table
Initial Set Accuracy			±1	%	50% load, 115/230 VAC
Minimum Load	0			A	No minimum load required
Start Up Delay			2	s	115/230 VAC full load.
Hold Up Time	10	20/13		ms	Min at full load, 115 VAC. Typical at 120 W/ 180 W
Drift			±0.02	%	After 20 min warm up
Line Regulation			±0.5	%	90-264 VAC
Load Regulation			±0.5	%	0-100% load.
Transient Response			4	%	Recovery within 1% in less than 500 μs for a 50-75% and 75-50% load step
Over/Undershoot		5	9	%	Full load
Ripple & Noise			1	% pk-pk	20 MHz bandwidth and 10 μF electrolytic capacitator in parallel with 0.1 μF ceramic capacitator.
Overvoltage Protection	110		140	%	Vnom, recycle input to reset
Overload Protection	110		175	% I nom	
Short Circuit Protection					Trip & Restart
Temperature Coefficient			0.02	%/°C	
Overtemperature Protection					Measured internally, Auto Resetting


General Characteristic Minimum Maximum Units Typical Notes & Conditions Efficiency 94 % 230 VAC Full load (see fig. 1 to 4) 4000 VAC 2 MOPP Isolation: Input to Output Input to Ground 1500 VAC 1 MOPP Output to Ground 1500 VAC 1 MOPP PFC 40 130 kHz Switching Frequency 50 80 kHz Main converter Power Density 12.2/8.1 W/in₃ Forced/convection-cooled Mean Time Between Failure 300 kHrs MIL-HDBK-217F, Notice 2 +25 °C GB Weight 0.53 (240) lb(g) For U channel version

Efficiency Vs Load

Figure 1 UCP180PS12

> 100% 90% Efficiency 115Vac 80% - 230Vac 70% 60% 20 30 40 60 70 80 100 10 50 90 Load (%)

AC-DC Power Supplies

Environmental

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Operating Temperature	-40		+70	°C	-40 °C for 120 W load, -20 °C for 180 W load, See derating curve, fig.3 and fig.4
Storage Temperature	-40		+85	°C	
Cooling	10			CFM	Forced-cooled > 120W
Humidity	5		95	%RH	Non-condensing
Operating Altitude			5000/4000	m	ITE/Medical
Shock	±3 x 30g shocks	in each plane, tota	l 18 shocks. 30g = 11ms (-	-/- 0.5msecs), h	alf sine. Conforms to EN60068-2-27
Vibration	Single axis 10-50	0 Hz at 2g sweep	and endurance at resonand	ce in all 3 planes	s. Conforms to EN60068-2-6

Temperature Derating Curves

Figure 3 - 120 W Convection Cooled

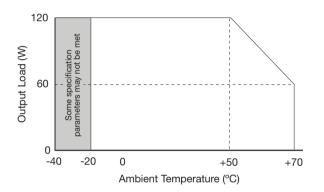
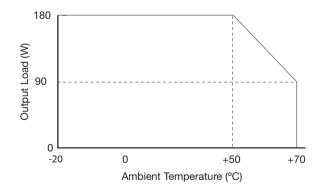



Figure 4 - 180 W Forced Cooled

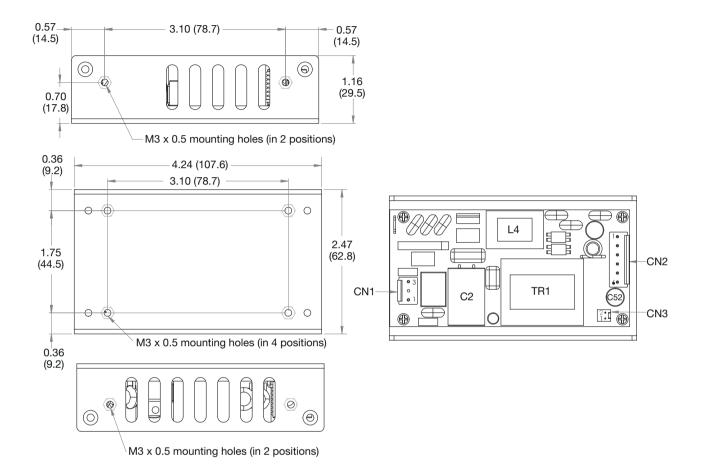
EMC: Emissions

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Conducted	EN55011/32	Class B		
Radiated	EN55011/32	Class A		Class B with King Core ferrites Output cable: KCF-130-B Input cable for 120 W load: K5B RC 14x28.5x7-M for all models with additional KCF-130-B on 48V version. Input cable for 180 W load: K5B RC 14x28.5x7-M plus KCF-130-B.
Harmonic Current	EN61000-3-2	Class A		
Voltage Functions	EN61000-3-3			

EMC: Immunity

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Medical Device EMC	IEC60601-1-2	Ed.4.0 : 2014	as below	
Low Voltage PSU EMC	EN61204-3	High severity level	as below	
ESD	EN61000-4-2	4	А	±8kV contact, ±15kV air
Radiated	EN61000-4-3	3	А	
EFT	EN61000-4-4	3	А	
Surges	EN61000-4-5	Installation class 3	А	
Conducted	EN61000-4-6	3	А	
Magnetic Fields	EN61000-4-8	4	А	
		Dip >95% (0 VAC), 8.3 ms	А	
	EN55024 (100 VAC)	Dip 30% (70 VAC), 416 ms	А	
		Dip >95% (0 VAC), 4160 ms	В	
	EN55024 (240 VAC)	Dip >95% (0 VAC), 10.0 ms	А	
		Dip 30% (168 VAC), 500 ms	А	
		Dip >95% (0 VAC), 5000 ms	В	
		Dip 100% (0 VAC), 10.0 ms	А	
Dips and Interruptions		Dip 100% (0 VAC), 20 ms	В	
Dips and interruptions	EN60601-1-2 (100 VAC)	Dip 60% (40 VAC), 100 ms	А	
		Dip 30% (40 VAC), 500 ms	А	
		Dip 100% (0 VAC), 5000 ms	В	
		Dip 100% (0 VAC), 10.0 ms	А	
		Dip 100% (0 VAC), 20 ms	В	
	EN60601-1-2 (240 VAC)	Dip 60% (96 VAC), 100 ms	А	
		Dip 30% (168 VAC), 500 ms	A	
		Dip 100% (0 VAC), 5000 ms	В	

Safety Approvals		
Safety Agency	Safety Standard	Notes & Conditions
CB Report	IEC60950-1-1, IEC62368-1	Information Technology
UL	UL60950-1, UL62368-1	Information Technology
TUV	EN62368-1	Information Technology
CB Report	IEC60601-1	Medical
UL	ES60601-1	Medical
EN	EN60601-1	Medical


Isolation	Safety Standard	Notes & Conditions
Primary to Secondary	2 x MOPP (Means of Patient Protection)	
Primary to Earth	1 x MOPP (Means of Patient Protection)	IEC60601-1 Ed 3.1
Secondary to Earth	1 x MOPP (Means of Patient Protection)	

AC-DC Power Supplies

Mechanical Details

Standard U-Channel Version

	CN1
Pin 1	AC-L
Pin 2	
Pin 3	AC-N

Mates with JST VHR-3N housing and SVH-21T-P1.1 crimps

	CN2
Pin 1	+Vo
Pin 2	+Vo
Pin 3	+Vo
Pin 4	Com
Pin 5	Com
Pin 6	Com

Mates with JST VHR-6N housing and SVH-21T-P1.1 crimps

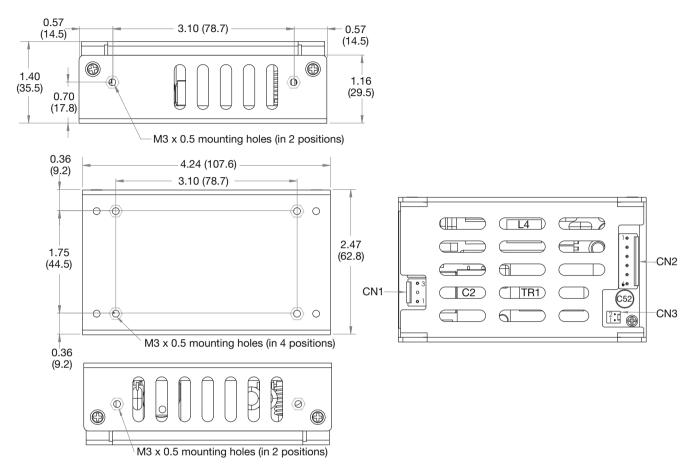
	CN3
Pin 1	Fan -
Pin 2	Fan +

Mates with Molex 22-01-1022 housing and 2759 crimps

Notes

1. All dimensions shown in inches (mm).

Tolerance: ±0.02 (0.5)


2. Weight: 0.53 lbs (240 g) approx.

AC-DC Power Supplies

Mechanical Details

Covered Version (-C suffix)

	CN1
Pin 1	AC-L
Pin 2	
Pin 3	AC-N

Mates with JST VHR-3N housing and SVH-21T-P1.1 crimps

	CN2
Pin 1	+Vo
Pin 2	+Vo
Pin 3	+Vo
Pin 4	Com
Pin 5	Com
Pin 6	Com

Mates with JST VHR-6N housing and SVH-21T-P1.1 crimps

	CN3
Pin 1	Fan -
Pin 2	Fan +

Mates with Molex 22-01-1022 housing and 2759 crimps

Notes

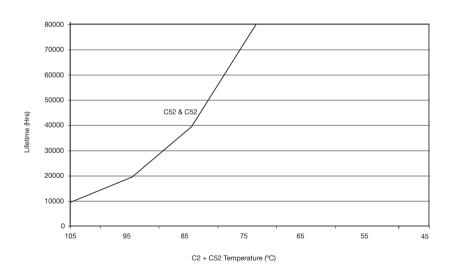
1. All dimensions shown in inches (mm). Tolerance: ±0.02 (0.5)

2. Weight: 0.61 lbs (275 g) approx.

AC-DC Power Supplies

In order to ensure safe operation of the PSU in the end-use equipment, the temperature of the components listed in the table below must not be exceeded. Temperature should be monitored using K type thermocouples placed on the hottest part of the component (out of direct air flow). See Mechanical Details for component locations.

Temperature Measurements (At Maximum Ambient)		
Component	Max Temperature °C	
TR1 Coil	110°C	
L4 Coil	120°C	
C2	105°C	
C52	105°C	


Service Life

The estimated service life of the UCP180 is determined by the cooling arrangements and load conditions experienced in the end application. Due to the uncertain nature of the end application this estimated service life is based on the actual measured temperature of a key capacitor with in the product when installed by the end application,

The graph below expresses the estimated lifetime of a given component temperature and assumes continuous operation at this temperature.

Estimated Service Life vs Component Temperature

Figure 5

XP Power