: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

USB Port Power Controller with Charger Emulation

Features

- Port Power Switch with Two Current Limit Behaviors:
- 2.9 V to 5.5 V source voltage range
- Up to 3.0A current (2.85A typical) with $55 \mathrm{~m} \Omega$ on resistance
- Overcurrent trip or Constant-Current Limiting
- Soft turn-on circuitry
- Selectable current limit
- UCS1003-1 has programmable current limit via the SMBus $2.0 / 1^{2} \mathrm{C}$ protocol
- Dynamic thermal management
- Undervoltage Lockout (UVLO) and Overvoltage Lockout (OVLO)
- Backdrive, back-voltage protection
- Latch or auto-recovery (low test current) Fault handling
- Selectable active-high or active-low power switch enable
- BC1.2 $\mathrm{V}_{\text {BUS }}$ discharge port renegotiation function
- Selectable/Automatic Cycling of Universal Serial Bus (USB) Data Line Charger Emulation Profiles:
- USB-IF BC1.2 Charging Downstream Port (CDP) and Dedicated Charging Port (DCP) modes, Chinese Telecommunications Industry Standard YD/T 1591-2009 and most Apple ${ }^{\circledR}$ Inc., Samsung and RIM ${ }^{\circledR}$ protocols standard
- UCS1003-1 supports other charger emulation profiles as defined via the SMBus $2.0 / /^{2} \mathrm{C}$ protocol
- Supports 12 W charging emulation
- USB 2.0 compliant high-speed data switch (in Data Pass-Through, SDP and CDP modes)
- Nine preloaded charger emulation profiles for maximum compatibility coverage of the peripheral devices
- UCS1003-1 has one custom programmable charger emulation profile for portable device support for fully host-controlled charger emulation
- Supports Active Cables
- UCS1003-1 Supports Self-Contained Current Monitoring and Rationing for Power Allocation Applications
- UCS1003-1 and UCS1003-3 have Low-Power Attach Detection and Open-Drain (A_DET\#) Pin
- UCS1003-2 has Charging Active (CHRG\#) Open-Drain Pin
- Ultra Low-Power Sleep State
- Optional Split Supply Support for V_{S} and V_{DD} for Low Power in System Standby States
- Wake on Attach USB (UCS1003-1 and UCS1003-3)
- UCS1003-1 Supports SMBus $2.0 / 1^{2} \mathrm{C}$ Communications:
- Supports block write and read
- Multiple SMBus addresses
- Wide Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- IEC61000-4-2 8/15 kV Electrostatic Discharge (ESD) Immunity
- UL Recognized and EN/IEC 60950-1 (CB) Certified

Description

The UCS1003-1/2/3 family of devices provides a USB port power switch for precise control of up to 3.0A continuous current (2.85A typical) with Overcurrent Limit (OCL), dynamic thermal management, latch or auto-recovery (low test current) Fault handling, selectable active-high or active-low enable, Undervoltage and Overvoltage Lockout, backdrive protection and back-voltage protection.
Split supply support for V_{S} and V_{DD} is an option for low power in system standby states. This gives batteryoperated applications (such as on-board computers) the ability to detect attachments from a Sleep or OFF state. After the Attach Detection is flagged, the system can decide to wake-up and/or provide charging.
In addition to Power Switching and Current-Limiting modes, the UCS1003-1/2/3 will automatically charge a wide variety of portable devices, including USB-IF BC1.2, YD/T-1591 (2009), most Apple Inc., Samsung, RIM and many others. Nine preloaded charger emulation profiles maximize the compatibility coverage of the peripheral devices. Additionally, a customizable charger emulation profile is available in UCS1003-1 to accommodate unique existing and future portable device handshaking/signature requirements.
The UCS1003-1 also provides current monitoring to allow intelligent management of system power and charge rationing for controlled delivery of current, regardless of the host power state. This is especially important for battery-operated applications that want to provide power and do not want to drain the battery excessively.
The UCS1003-1/2/3 family is available in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 20-pin QFN package.

Applications

- Notebook and Netbook Computers
- Tablets and E-Book Readers
- Desktops and Monitors
- Docking Stations and Printers
- AC-DC Wall Adapters

UCS1003-1/2/3

Package Type

* Includes Exposed Thermal Pad (EP); see Table 3-1.

Block Diagram

Note 1: Available for UCS1003-1 only.
2: Available for UCS1003-2 only.
3: Available for UCS1003-3 only.

UCS1003-1/2/3

NOTES:

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings ${ }^{\dagger}$
Voltage on $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{S}}$ and $\mathrm{V}_{\mathrm{BUS}}$ Pins -0.3 to 6 V
Pull-up Voltage ($\mathrm{V}_{\text {PULLUP }}$) -0.3 to $V_{D D}+0.3 V$
Data Switch Current (llusw_ON), Switch On $\pm 50 \mathrm{~mA}$
Port Power Switch Current Internally Limited
Data Switch Pin Voltage To Ground ($\mathrm{D}_{\text {POUT }}, \mathrm{D}_{\text {PIN }}, \mathrm{D}_{\text {MOUT }}, \mathrm{D}_{\mathrm{MIN}}$); (V_{DD} powered or unpowered)

\qquad
-0.3 to $V_{D D}+0.3 V$
Differential Voltage Across Open Data Switch ($\mathrm{D}_{\text {POUT }}$ - $\mathrm{D}_{\text {PIN }}, \mathrm{D}_{\text {MOUT }}-\mathrm{D}_{\text {MIN }}, \mathrm{D}_{\text {PIN }}-\mathrm{D}_{\text {POUT }}, \mathrm{D}_{\text {MIN }}-\mathrm{D}_{\text {MOUT }}$) $V_{D D}$
Voltage on any Other Pin to Ground -0.3 to $V_{D D}+0.3 V$
Current on any Other Pin $\pm 10 \mathrm{~mA}$
Package Power Dissipation Table 1-1
Operating Ambient Temperature Range -40 to $+125^{\circ} \mathrm{C}$
Storage Temperature Range -55 to $+150^{\circ} \mathrm{C}$
\dagger Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: POWER DISSIPATION SUMMARY

Board	Package	$\theta_{\mathbf{J C}}$	$\theta_{\mathbf{J A}}$	Derating Factor Above $+25^{\circ} \mathbf{C}$	$\mathbf{T}_{\mathbf{A}}<+\mathbf{2 5}{ }^{\circ} \mathbf{C}$ Power Rating	$\mathbf{T}_{\mathbf{A}}<+\mathbf{7 0}^{\circ} \mathbf{C}$ Power Rating	$\mathbf{T}_{\mathbf{A}}<+\mathbf{8 5}^{\circ} \mathbf{C}$ Power Rating
High K (see Note 1)	$20-$ pin QFN $4 \times 4 \mathrm{~mm}$	$6^{\circ} \mathrm{C} / \mathrm{W}$	$41^{\circ} \mathrm{C} / \mathrm{W}$	$24.4 \mathrm{~mW} / \mathrm{C}$	2193 mW	1095 mW	729 mW
Low K (see Note 1)	$20-\mathrm{pin} \mathrm{QFN}$ $4 \times 4 \mathrm{~mm}$	$6^{\circ} \mathrm{C} / \mathrm{W}$	$60^{\circ} \mathrm{C} / \mathrm{W}$	$16.67 \mathrm{~mW} / \mathrm{C}$	1498 mW	748 mW	498 mW

Note 1: Junction to ambient $\left(\theta_{\mathrm{JA}}\right)$ is dependent on the design of the thermal vias. A High K board uses a thermal via design with a thermal landing soldered to the PCB ground plane, with 0.3 mm (12 mil) diameter vias in a 3×3 matrix (9 total) at $0.5 \mathrm{~mm}(20 \mathrm{mil})$ pitch. The board is multilayer with 1-ounce internal power and ground planes and 2-ounce copper traces on top and bottom. A Low K board is a two-layer board without thermal via design, with 2-ounce copper traces on the top and bottom.

UCS1003-1/2/3

TABLE 1-2: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {PULLUP }}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions
Power Supply						
Supply Voltage	$V_{\text {DD }}$	4.5	5	5.5	V	(Note 1)
Source Voltage	V_{S}	2.9	5	5.5	V	(Note 1)
Supply Current in Active (I_{DD} ACTIVE $+\mathrm{I}_{\text {VS_ACT }}$)	$\mathrm{I}_{\text {ACtive }}$	-	650	750	$\mu \mathrm{A}$	Average current, $\mathrm{I}_{\text {BUS }}=0 \mathrm{~mA}$
Supply Current in Sleep ($\left.\mathrm{l}_{\mathrm{DD} \text { _SLEEP }}+\mathrm{I}_{\text {VS_SLEEP }}\right)$	$I_{\text {SLEEP }}$	-	5	15	$\mu \mathrm{A}$	Average current, $\mathrm{V}_{\text {PULLUP }} \leq \mathrm{V}_{\mathrm{DD}}$
Supply Current in Detect ($\left.\mathrm{I}_{\mathrm{DD} \text { _DETECT }}+\mathrm{I}_{\text {VS_DETECT }}\right)$	$\mathrm{I}_{\text {DETECT }}$	-	185	-	$\mu \mathrm{A}$	Average current, no portable device attached
Power-on Reset						
$\mathrm{V}_{\text {S }}$ Low Threshold	$\mathrm{V}_{\text {S_UVLO }}$	-	2.5	-	V	V_{S} voltage increasing
$V_{\text {S }}$ Low Hysteresis	$\mathrm{V}_{\text {S_UVLO_HYST }}$	-	100	-	mV	$\mathrm{V}_{\text {S }}$ voltage decreasing
$V_{\text {DD }}$ Low Threshold	V ${ }_{\text {DD_TH }}$	-	4	-	V	$V_{\text {DD }}$ voltage increasing
V_{DD} Low Hysteresis	$\mathrm{V}_{\text {DD_TH_HYST }}$	-	500	-	mV	V_{DD} voltage decreasing

I/O Pins - SMCLK (UCS1003-1), SMDATA (UCS1003-1), EM_EN, M1, M2, PWR_EN, S0, LATCH, ALERT\#, A_DET\# (UCS1003-1 and UCS1003-3), CHRG\# (UCS1003-2) - DC Parameters

Output Low Voltage	V_{OL}	-	-	0.4	V	$\mathrm{I}_{\text {SINK }} \mathrm{IO}=8 \mathrm{~mA}$, SMDĀTA, ALERT\#, A_DET\#, CHRG\#
Input High Voltage	V_{IH}	2.0	-	-	V	PWR_EN, EM_EN, M1, M2, LATCH, SO, SMDATA, SMCLK
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	-	-	0.8	V	PWR_EN, EM_EN, M1, M2, LATCH, SO, SMDATA, SMCLK
Leakage Current	ILEAK	-	-	± 5	$\mu \mathrm{A}$	Powered or unpowered, $\mathrm{V}_{\text {PULLUP }} \leq \mathrm{V}_{\mathrm{DD}}$
Interrupt Pins - AC Parameters						
ALERT\#, A_DET\# Pins Blanking Time	$t_{\text {BLANK }}$	-	25	-	ms	
ALERT\# Pin Interrupt Masking Time	$\mathrm{t}_{\text {MASK }}$	-	5	-	ms	
SMBus/l²C Timing (UCS1003-1 only)						
Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	5	-	pF	
Clock Frequency	$\mathrm{f}_{\text {SMB }}$	10	-	400	kHz	
Spike Suppression	t_{SP}		-	50	ns	(Note 2)
Bus Free Time Stop to Start	$\mathrm{t}_{\text {BUF }}$	1.3	-	-	$\mu \mathrm{s}$	

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}\left(\right.$ if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 \mathrm{~A}$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PULLUP}}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions
Start Setup Time	$\mathrm{t}_{\text {SU:STA }}$	0.6	-	-	$\mu \mathrm{s}$	
Start Hold Time	$\mathrm{t}_{\text {HD:STA }}$	0.6	-	-	$\mu \mathrm{s}$	
Stop Setup Time	$\mathrm{t}_{\text {SU:STO }}$	0.6	-	-	$\mu \mathrm{s}$	
Data Hold Time	$\mathrm{t}_{\text {HD:DAT }}$	0	-	-	$\mu \mathrm{s}$	When transmitting to the master
Data Hold Time	$\mathrm{t}_{\text {HD:DAT }}$	0.3	-	-	$\mu \mathrm{s}$	When receiving from the master
Data Setup Time	$\mathrm{t}_{\text {SU:DAT }}$	0.6	-	-	$\mu \mathrm{s}$	
Clock Low Period	$\mathrm{t}_{\text {LOW }}$	1.3	-	-	$\mu \mathrm{s}$	
Clock High Period	$\mathrm{t}_{\text {HIGH }}$	0.6	-	-	$\mu \mathrm{s}$	
Clock/Data Fall Time	$\mathrm{t}_{\text {FALL }}$	-	-	300	ns	Min = 20 + 0.1 C COAD
Clock/Data Rise Time (Note 3)	$\mathrm{t}_{\text {RISE }}$	-	-	300	ns	Min = 20 + 0.1 C COAD
Capacitive Load	C $_{\text {LOAD }}$	-	-	400	pF	Per bus line (Note 2)
Time-out	$\mathrm{t}_{\text {TIMEOUT }}$	25	-	35	ms	Disabled by default (Note 2)
Idle Reset	$\mathrm{t}_{\text {IDLE_RESET }}$	350	-	-	$\mu \mathrm{s}$	Disabled by default (Note 2)

High-Speed Data Switch - DC Parameters						
Switch Leakage Current	IHSW_OFF	-	± 0.5	-	$\mu \mathrm{A}$	Switch open - $D_{\text {PIN }}$ to $D_{\text {POUT }}$, $\mathrm{D}_{\text {MIN }}$ to $\mathrm{D}_{\text {MOUT }}$ or all four pins to ground; $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{S}}$
Charger Resistance	$\mathrm{R}_{\text {CHG }}$	-	2	-	$\mathrm{M} \Omega$	$D_{\text {POUT }}$ or $D_{\text {MOUT }}$ to $V_{\text {BUS, }}$ or ground (see Figure 1-2), BC1.2 DCP charger emulation is active
On Resistance	RON_HSW	-	2	-	Ω	$\begin{aligned} & \text { Switch closed, } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \text { Test Current }=8 \mathrm{~mA}, \\ & \text { Test Voltage }=0.4 \mathrm{~V} \\ & \text { (see Figure 1-2) } \end{aligned}$
On Resistance	RON_HSW_1	-	5	-	Ω	```Switch closed, V VD = 5V, Test Current = 8 mA, Test Voltage = 3.0V (see Figure 1-2)```
Delta-On Resistance	$\Delta \mathrm{R}_{\text {ON_HSW }}$	-	± 0.3	-	Ω	Switch closed, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{TST}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TST}}=0$ to 1.5 V (see Figure 1-2)

High-Speed Data Switch - AC Parameters

$\mathrm{D}_{\mathrm{P}}, \mathrm{D}_{\mathrm{M}}$ Capacitance to Ground	$\mathrm{C}_{\mathrm{HSW}}$ _ON	-	4	-	pF	Switch closed, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{D}_{\mathrm{P},} \mathrm{D}_{\mathrm{M}}$ Capacitance to Ground	$\mathrm{C}_{\mathrm{HSW}}$ _OFF	-	2	-	pF	Switch open, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}\left(\right.$ if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and ILIM $\leq 1.68 \mathrm{~A}$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

UCS1003-1/2/3

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {PULLUP }}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions
Turn-Off Time	$t_{\text {HSW_OFF }}$	-	400	-	$\mu \mathrm{s}$	Time from state control (EM EN, M1, M2) switch on to switch off, $\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$
Turn-On Time	${ }^{\text {thsw_ON }}$	-	400	-	$\mu \mathrm{s}$	Time from state control (EM_EN, M1, M2) switch off to switch on, $\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$
Propagation Delay	$\mathrm{t}_{\text {PD }}$	-	0.25	-	ns	$\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$
Propagation Delay Skew	$\Delta \mathrm{t}_{\text {PD }}$	-	25	-	ps	$\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$
Rise/Fall Time	$\mathrm{t}_{\text {F/R }}$	-	10	-	ns	$\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$
$\mathrm{D}_{\mathrm{P}}-\mathrm{D}_{\mathrm{M}}$ Crosstalk	$\mathrm{X}_{\text {TALK }}$	-	-40	-	dB	$\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$
Off Isolation	$\mathrm{O}_{\text {IRR }}$	-	-30	-	dB	$\begin{aligned} & R_{\text {TERM }}=50 \Omega, C_{\text {LOAD }}=5 \mathrm{pF}, \\ & \mathrm{f}=240 \mathrm{MHz} \end{aligned}$
-3 dB Bandwidth	BW	-	1100	-	MHz	$\begin{aligned} & \mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\text {DPOUT }}=\mathrm{V}_{\text {DMOUT }}=350 \mathrm{mV} \text { DC } \end{aligned}$
Total Jitter	t_{J}	-	200	-	ps	$\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\mathrm{LOAD}}=5 \mathrm{pF}$, Rise Time $=$ Fall Time $=500$ ps at $480 \mathrm{Mbps}\left(\right.$ PRBS $\left.=2^{15}-1\right)$
Skew of Opposite Transitions of the Same Output	$\mathrm{t}_{\text {SK(}}$ ($)$	-	20	-	ps	$\mathrm{R}_{\text {TERM }}=50 \Omega, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}$
Port Power Switch						
Port Power Switch - DC Parameter						
Overvoltage Lockout	$\mathrm{V}_{\text {s_ov }}$	-	6	-	V	
On Resistance	Ron_pSw	-	55	-	$\mathrm{m} \Omega$	$4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<5.25 \mathrm{~V}$
$\mathrm{V}_{\text {S }}$ Leakage Current	ILEAK_vs	-	2.2	-	$\mu \mathrm{A}$	Sleep state into V_{S} pin
Back-Voltage Protection Threshold	$\mathrm{V}_{\text {BV_TH }}$	-	150	-	mV	$\mathrm{V}_{\text {BUS }}>\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{S}}>\mathrm{V}_{S_{-}}$UVLO
Backdrive Current	$\mathrm{IBD}_{\text {-1 }}$	-	0	3	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}}$ TH, Any powered power pin to any unpowered power pin; current out of unpowered pin (Note 3)
	$\mathrm{I}_{\mathrm{BD} _2}$	-	0	2	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD}}$ TH, Any powerèd power pin to any unpowered power pin, except for $V_{D D}$ to $V_{B U S}$ in Detect power state and V_{S} to $\mathrm{V}_{\text {Bus }}$ in Active power state; current out of unpowered pin (Note 3)

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}$ (if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 \mathrm{~A}$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

UCS1003-1/2/3

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PULLUP}}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}$ (if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 \mathrm{~A}$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

UCS1003-1/2/3

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {PULLUP }}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions
Thermal Regulation Limit	$\mathrm{T}_{\text {REG }}$	-	110	-	${ }^{\circ} \mathrm{C}$	Die temperature at which current limit will be reduced
Thermal Regulation Hysteresis	TREG_HYST	-	10	-	${ }^{\circ} \mathrm{C}$	Hysteresis for $\mathrm{t}_{\text {REG }}$ functionality; temperature must drop by this value before $\mathrm{I}_{\text {LIM }}$ value is restored to normal operation
Thermal Shutdown Threshold	$\mathrm{T}_{\text {TSD }}$	-	135	-	${ }^{\circ} \mathrm{C}$	Die temperature at which port power switch will turn off
Thermal Shutdown Hysteresis	$\mathrm{T}_{\text {TSD_HYST }}$	-	35	-	${ }^{\circ} \mathrm{C}$	After shutdown, due to $T_{\text {TSD }}$ being reached, die temperature drop required before port power switch can be turned on again
Auto-Recovery Test Current	$I_{\text {TEST }}$	-	190	-	mA	Portable device attached, $\mathrm{V}_{\text {BUS }}=0 \mathrm{~V}$, Die Temp $<\mathrm{T}_{\text {TSD }}$
Auto-Recovery Test Voltage	$\mathrm{V}_{\text {TEST }}$	-	750	-	mV	Portable device attached, $V_{\text {BUS }}=0 \mathrm{~V}$ before application, Die Temp < T TSD programmable (UCS1003-1 only), $250-1000 \mathrm{mV}$, default listed
Discharge Impedance	$\mathrm{R}_{\text {DISCHARGE }}$	-	100	-	Ω	
Port Power Switch - AC Parameters						
Turn-On Delay	ton_Psw	-	0.75	-	ms	PWR_EN active toggle to switch on time, $\mathrm{V}_{\text {BUS }}$ discharge is not active
Turn-Off Time	toff_PSW_INA	-	0.75	-	ms	PWR_EN inactive toggle to switch off time, $\mathrm{C}_{\text {BUS }}=120 \mu \mathrm{~F}$
Turn-Off Time	toff_PSW_ERR	-	1	-	ms	Overcurrent error, $\mathrm{V}_{\mathrm{BUS}}$ min error or discharge error to switch off, $\mathrm{C}_{\text {BUS }}=120 \mu \mathrm{~F}$
Turn-Off Time	toff_PSW_ERR	-	100	-	ns	TSD or backdrive error to switch off, $\mathrm{C}_{\mathrm{BUS}}=120 \mu \mathrm{~F}$
$\mathrm{V}_{\text {BUS }}$ Output Rise Time	$\mathrm{t}_{\text {R_BuS }}$	-	1.1	-	ms	Measured from 10% to 90% of $\mathrm{V}_{\text {BUS }}, \mathrm{C}_{\text {LOAD }}=220 \mu \mathrm{~F}$, $\mathrm{L}_{\text {LIM }}=1.0 \mathrm{~A}$
Soft Turn-on Rate	$\Delta_{\text {BUS }} / \Delta_{\mathrm{t}}$	-	100	-	$\mathrm{mA} / \mu \mathrm{s}$	
Temperature Update Time	$\mathrm{t}_{\text {DC_TEMP }}$	-	200	-	ms	Programmable (UCS1003-1 only) 200-1600 ms, default listed

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}$ (if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 \mathrm{~A}$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PULLUP}}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions
Short-Circuit Response Time	$\mathrm{t}_{\text {SHORT_LIM }}$	-	1.5	-	$\mu \mathrm{s}$	Time from detection of short to current limit applied; no C_{B} S applied
Short-Circuit Detection Time	$\mathrm{t}_{\text {SHORT }}$	-	6	-	ms	Time from detection of short to port power switch disconnect and ALERT\# pin assertion
Latched Mode Cycle Time	$t_{\text {UL }}$	-	7	-	ms	From PWR_EN edge transition from inactive to active to begin error recovery
Auto-Recovery Mode Cycle Time	$\mathrm{t}_{\text {CYCLE }}$	-	25	-	ms	Time delay before error condition check, programmable (UCS1003-1 only) 10-25 ms, default listed
Auto-Recovery Delay	$\mathrm{t}_{\text {RST }}$	-	20	-	ms	Portable device attached, $\mathrm{V}_{\text {BUS }}$ must be $\geq \mathrm{V}_{\text {TEST }}$ after this time, programmable (UCS1003-1 only) $10-25 \mathrm{~ms}$, default listed
Discharge Time	$\mathrm{t}_{\text {DISCHARGE }}$	-	200	-	ms	Amount of time discharge resistor applied, programmable (UCS1003-1 only) 100-400 ms, default listed

Port Power Switch Operation with Trip Mode Current Limiting

Region 2 Current Keep-out	$I_{\text {BUS_R2MIN }}$	-	0.12	-	A	
Minimum $V_{\text {BUS }}$ Allowed at Output	V ${ }_{\text {BUS_MIN }}$	1.5	2.0	2.25	V	
Port Power Switch Operation with Constant-Current Limiting (Variable Slope)						
Region 2 Current Keep-out	$I_{\text {BUS_R2MIN }}$	-	1.68	-	A	
Minimum $V_{\text {BUS }}$ Allowed at Output	V ${ }_{\text {BUS_MIN }}$	1.5	2.0	2.25	V	
Current Measurement (UCS1003-1 only) - DC						
Current Measurement Range	IBUS_M	0	-	2988.6	mA	Range 0-255 LSB (Note 4)
Reported Current Measurement Resolution	DIBUS_M	-	11.72	-	mA	1 LSB
Current Measurement		-	± 2	-	\%	$180 \mathrm{~mA}<\mathrm{I}_{\text {BUS }}<\mathrm{I}_{\text {LIM }}$
Accuracy		-	± 2	-	LSB	$\mathrm{I}_{\text {BUS }}<180 \mathrm{~mA}$
Current Measurement (UCS1003-1 only) - AC						
Sampling Rate		-	500	-	$\mu \mathrm{s}$	

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}$ (if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 \mathrm{~A}$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

UCS1003-1/2/3

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {PULLUP }}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions
Charge Rationing (UCS1003-1 only) - DC						
Accumulated Current Measurement Accuracy		-	± 4.5	-	$\%$	
Charge Rationing (UCS1003-1 only) - AC						
Current Measurement Update Time	t $_{\text {PCYCLE }}$	-	1	-	s	

Attach/Removal Detection

$\mathrm{V}_{\text {BUS }}$ Bypass - DC							
On Resistance	$\mathrm{R}_{\text {ON_BYP }}$	-	50	-	Ω		
Leakage Current	$\mathrm{I}_{\text {LEAK_BYP }}$	-	-	3	$\mu \mathrm{~A}$	Switch off (Note 2)	
Current Limit	$\mathrm{I}_{\text {DET_CHG }} /$ $\mathrm{I}_{\text {BUS_BYP }}$	-	2	-	mA	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and $\mathrm{V}_{\text {BUS }}>4.75 \mathrm{~V}$	

Attach/Removal Detection - DC						
Attach Detection Threshold	$\mathrm{I}_{\text {DET_QUAL }}$	-	800	-	$\mu \mathrm{A}$	Programmable (UCS1003-1 only) 200-1000 $\mu \mathrm{A}$, default listed
Primary Removal Detection Threshold	$I_{\text {REM_QUAL_ACT }}$	-	700	-	$\mu \mathrm{A}$	Programmable (UCS1003-1 only) 100-900 $\mu \mathrm{A}$, default listed, Active power state
	IREM_QUAL_DET	-	800	-	$\mu \mathrm{A}$	Programmable (UCS1003-1 only) 200-1000 $\mu \mathrm{A}$, default listed, Detect power state (see Section 8.4 "Removal Detection")

Attach/Removal Detection - AC						
Attach Detection Time	${ }^{\text {t }}$ ET_QUAL	-	100	-	ms	Time from attach to A_DET\# assert (UCS1003-1 and UCS1003-3 only)
Removal Detection Time	$\mathrm{t}_{\text {REM_QUAL }}$	-	1000	-	ms	
Allowed Charge Time	$\mathrm{t}_{\text {DET_CHARGE }}$	-	800	-	ms	$\mathrm{C}_{\mathrm{BUS}}=500 \mu \mathrm{~F}$ maximum, programmable 200-2000 ms, default listed
Charger Emulation Profile						
General Emulation - DC						
Charging Current Threshold	$\mathrm{I}_{\text {BUS_CHG }}$	-	46.9	-	mA	Default value for UCS1003-1
		-	175.8	-	mA	UCS1003-2 and UCS1003-3

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}\left(\right.$ if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 \mathrm{~A}$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PULLUP}}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions
Charging Current Threshold Range	IBUS_CHG_RNG	11.72	-	175.8	mA	(Note 5)
DP-DM Shunt Resistor Value	$\mathrm{R}_{\text {DCP_RES }}$	-	-	200	Ω	Connected between DPOUT and $\mathrm{D}_{\text {MOUT }}$ $0 \mathrm{~V}<\mathrm{D}_{\text {POUT }}=\mathrm{D}_{\text {MOUT }}<3 \mathrm{~V}$
Response Magnitude (voltage divider option resistance range)	$\begin{gathered} \hline \text { SX_RXMAG_ } \\ \text { DVDR } \end{gathered}$	93	-	200	$\mathrm{k} \Omega$	(Note 5)
Resistor Ratio Range (voltage divider option)	SX_RATIO	0.25	-	0.66	V/V	(Note 5)
Resistor Ratio Accuracy (voltage divider option)	SX_RATIO_ACC	-	± 0.5	-	\%	Average over range
Response Magnitude (resistor option range)	$\begin{aligned} & \hline \text { SX_RXMAG_ } \\ & \text { RES } \end{aligned}$	1.8	-	150	$\mathrm{k} \Omega$	(Note 5)
Internal Resistor Tolerance (resistor option)	$\begin{gathered} \hline \text { SX_RXMAG_ } \\ \text { RES_ACC } \end{gathered}$	-	± 10	-	\%	Average over range
Response Magnitude (voltage option range)	$\begin{gathered} \text { SX_RXMAG_ } \\ \text { VOLT } \end{gathered}$	0.4	-	2.2	V	(Note 5)
Voltage Option Accuracy	SX_RXMAG_ VOLT_ACC	-	± 1	-	\%	No load, average over range
Voltage Option Accuracy	$\begin{array}{\|c\|} \hline \text { SX_RXMAG_- } \\ \text { VOLT_ACC_150 } \end{array}$	-	-6	-	\%	$150 \mu \mathrm{~A}$ load, average over range
Voltage Option Accuracy	$\begin{gathered} \text { SX_RXMAG_- } \\ \text { VOLT_ACC_250 } \end{gathered}$	-	-10	-	\%	$250 \mu \mathrm{~A}$ load, average over range
Voltage Option Output	$\begin{gathered} \hline \text { SX_RXMAG_ } \\ \text { VOLT_BC } \end{gathered}$	0.5	-	-	V	$\mathrm{D}_{\text {MOUT }}=0.6 \mathrm{~V}, 250 \mu \mathrm{~A}$ load (Note 3)
Response Magnitude (zero volt option range)	SX_PUPD	10	-	150	$\mu \mathrm{A}$	$\text { SX_RXMAG_VOLT = } 0$ (Note 5)
Pull-Down Current Accuracy	$\begin{gathered} \text { SX_PUPD_- } \\ \text { ACC_3p6 } \end{gathered}$	-	± 5	-	\%	$D_{\text {POUT }}$ or $D_{\text {MOUT }}=3.6 \mathrm{~V}$, compliance voltage
Pull-Down Current	$\begin{gathered} \text { SX_PUPD_ } \\ \text { ACC_BC } \end{gathered}$	50	-	-	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { Setting }=100 \mu \mathrm{~A}, \\ & \mathrm{D}_{\text {POUT }} \text { or } \mathrm{D}_{\text {MOUT }}=0.15 \mathrm{~V} \\ & \text { compliance voltage (Note 3) } \\ & \hline \end{aligned}$
Stimulus Voltage Threshold Range	SX_TH	0.3	-	2.2	V	(Note 5)
Stimulus Voltage Accuracy	SX_TH_ACC	-	± 2	-	\%	Average over range
Stimulus Voltage Accuracy	$\begin{gathered} \text { SX_TH_ACC_ } \\ B C \end{gathered}$	0.25	-	-	V	At SX_TH $=0.3 \mathrm{~V}$ (Note 3)

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}$ (if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 A$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

UCS1003-1/2/3

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=2.9 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PULLUP}}=3 \mathrm{~V}$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; all Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

Characteristic	Sym.	Min.	Typ.	Max.	Unit	Conditions	
General Emulation - AC							
Emulation Reset Time	$\mathrm{t}_{\text {EM_RESET }}$	-	50	-	ms	Default	
Emulation Reset Time Range	$\mathrm{t}_{\text {EM_RESET_RNG }}$	50	-	175	ms	(Note 5)	
Emulation Time-out Range	$\mathrm{t}_{\text {EM_TIMEOUT }}$	0.8	-	12.8	s	(Note 5)	
Stimulus Delay, SX_TD Range	$\mathrm{t}_{\text {STIM_DEL }}$	0	-	100	ms	(Note 5)	
Emulation Delay	$\mathrm{t}_{\text {RES_EM }}$	-	-	0.5	s	Time from set impedance to impedance appearing on $\mathrm{D}_{\mathrm{P}} / \mathrm{D}_{\mathrm{M}}$ $($ Note 3)	

Note 1: For split supply systems using the Attach Detection feature, V_{S} must not exceed $\mathrm{V}_{\mathrm{DD}}+150 \mathrm{mV}$.
2: This parameter is ensured by design and not 100% tested.
3: This parameter is characterized, but not 100% production tested.
4: The current measurement full-scale range maximum value is 3.0A. However, the UCS1003-1 cannot report values above $I_{\text {LIM }}$ (if $I_{\text {BUS_R2MIN }} \leq I_{\text {LIM }}$) or above $I_{\text {BUS_R2MIN }}$ (if $I_{\text {BUS_R2MIN }}>I_{\text {LIM }}$ and $I_{\text {LIM }} \leq 1.68 A$).
5: The Min and Max values represent the boundaries of a programmable range for UCS1003-1 only. Each value in the range is typical.

Data Signal Rise and Fall Time
FIGURE 1-1: USB Rise Time/Fall Time Measurement.

FIGURE 1-2: Description of DC Terms.
TABLE 1-3: TEMPERATURE SPECIFICATIONS

Parameters	Sym	Min	Typ	Max	Units	Conditions
Temperature Ranges						
Operating Temperature Range	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	T_{A}	-55	-	+150	${ }^{\circ} \mathrm{C}$	
Thermal Package Resistances (see Table 1-1)						

UCS1003-1/2/3

NOTES:

UCS1003-1/2/3

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

FIGURE 2-1: USB-IF High-Speed Eye Diagram (Without Data Switch).

FIGURE 2-2: USB-IF High-Speed Eye Diagram (With Data Switch).

FIGURE 2-3: Short Applied After
Power-up.

FIGURE 2-4: Power-up Into a Short.

FIGURE 2-5:
Internal Power Switch Short Response.

FIGURE 2-6: $\quad V_{B U S}$ Discharge Behavior.

UCS1003-1/2/3

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

FIGURE 2-7: Data Switch Off Isolation vs.
Frequency.

FIGURE 2-8: Data Switch Bandwidth vs.
Frequency.

FIGURE 2-9: Data Switch On Resistance vs. Temperature.

FIGURE 2-10: Power Switch On
Resistance vs. Temperature.

FIGURE 2-11: $\quad R_{D C P _R E S}$ Resistance vs. Temperature.

FIGURE 2-12: Power Switch On/Off Time
vs. Temperature.

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

FIGURE 2-13: $\quad V_{S}$ Overvoltage Threshold vs. Temperature.

FIGURE 2-14: $\quad V_{S}$ Undervoltage Threshold vs. Temperature.

FIGURE 2-15: Detect State $V_{B U S}$ vs. IBUS.

FIGURE 2-16: Trip Current Limit Operation vs. Temperature.

FIGURE 2-17: I ${ }_{\text {BUS }}$ Measurement Accuracy.

FIGURE 2-18: Active State Current vs. Temperature.

UCS1003-1/2/3

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

FIGURE 2-19: Detect State Current vs. Temperature.

FIGURE 2-20: Sleep State Current vs.
Temperature.

FIGURE 2-21: $\quad I_{\text {LIM1 }}$ Trip Current
Distribution.

FIGURE 2-22: I IIM2 Trip Current Distribution.

FIGURE 2-23: $\quad I_{\text {LIM3 }}$ Trip Current Distribution.

FIGURE 2-24: I IIM4 Trip Current
Distribution.

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+27^{\circ} \mathrm{C}$.

FIGURE 2-25: I IIM5 Trip Current
Distribution.

FIGURE 2-26: I IIM6 Trip Current
Distribution.

FIGURE 2-27: $\quad I_{\text {LIM }}$ Trip Current Distribution.

FIGURE 2-28: $\quad I_{\text {LIM } 8}$ Trip Current
Distribution.

UCS1003-1/2/3

NOTES:

3．0 PIN DESCRIPTION

Descriptions of the pins are listed in Table 3－1．
TABLE 3－1：PIN FUNCTION TABLE

UCS1003－1／2／3 4x4 QFN	Symbol	Function	Pin Type	Connection Type if Pin Not Used
1	M1	M2	Active Mode Selector Input \＃1．	Active Mode Selector Input \＃2．

Note 1：Total leakage current from Pins 3 and $4\left(V_{B U S}\right)$ to ground must be less than $100 \mu A$ for proper Attach／Removal Detection operation．
2：It is recommended to use $2 \mathrm{M} \Omega$ pull－down resistors on the $\mathrm{D}_{\text {POUT }}$ and／or $\mathrm{D}_{\text {MOUT }}$ pin if a portable device stimulus is expected when using the customer charger emulation profile with the high－speed data switch open．The $2 \mathrm{M} \Omega$ value is based on BC 1.1 impedance characteristics for Dedicated Charging Ports．
3：To ensure operation，the PWR＿EN pin must be enabled，as determined by the SEL pin decode，when it is not driven by an external device．Furthermore， one of the M1，M2 or EM＿EN pins must be connected to $V_{D D}$ if all three are not driven from an external device．If the PWR＿EN pin is disabled，or all of the M1，M2 and EM＿EN pins are connected to ground，the UCS1003－1 will remain in the Sleep or Detect state unless activated via the SMBus（UCS1003－2 and UCS1003－3 will remain in Sleep or Detect state indefinitely）．

TABLE 3－1：PIN FUNCTION TABLE（CONTINUED）

$\begin{gathered} \text { UCS1003-1/2/3 } \\ 4 \times 4 \text { QFN } \end{gathered}$	Symbol	Function	Pin Type	Connection Type if Pin Not Used
13	ALERT\＃	Active－low error event output flag （requires pull－up resistor）．	OD	Connect to ground
14	$\mathrm{D}_{\text {PIN }}$	USB data input（plus）．	AIO	Connect to ground or ground through a resistor
15	$\mathrm{D}_{\text {MIN }}$	USB data input（minus）．	AIO	Connect to ground or ground through a resistor
16	$\mathrm{D}_{\text {MOUT }}$	USB data output（minus）．	AIO（Note 2）	Connect to ground
17	$\mathrm{D}_{\text {POUT }}$	USB data output（plus）．	AIO（Note 2）	Connect to ground
18	A DET\＃ （UCS1003－1 and UCS1003－3）	Active－low device Attach Detection output flag （requires pull－up resistor）．	OD	Connect to ground
	$\begin{gathered} \text { CHRG\# } \\ \text { (UCS1003-2) } \end{gathered}$	Active－low＂Charging Active＂output flag（requires pull－up resistor）．	OD	Connect to ground
19	EM＿EN	Active mode selector input．	DI	Connect to ground or V_{DD}（Note 3）
20	GND	Ground．	Power	n／a
21	EP	Exposed thermal pad．Must be connected to electrical ground．	EP	n／a

Note 1：Total leakage current from Pins 3 and $4\left(V_{B U S}\right)$ to ground must be less than $100 \mu \mathrm{~A}$ for proper Attach／Removal Detection operation．
2：It is recommended to use $2 \mathrm{M} \Omega$ pull－down resistors on the $D_{\text {POUT }}$ and／or $D_{\text {MOUT }}$ pin if a portable device stimulus is expected when using the customer charger emulation profile with the high－speed data switch open．The $2 \mathrm{M} \Omega$ value is based on BC1．1 impedance characteristics for Dedicated Charging Ports．
3：To ensure operation，the PWR＿EN pin must be enabled，as determined by the SEL pin decode，when it is not driven by an external device．Furthermore， one of the M1，M2 or EM＿EN pins must be connected to $V_{D D}$ if all three are not driven from an external device．If the PWR＿EN pin is disabled，or all of the M1，M2 and EM＿EN pins are connected to ground，the UCS1003－1 will remain in the Sleep or Detect state unless activated via the SMBus（UCS1003－2 and UCS1003－3 will remain in Sleep or Detect state indefinitely）．

TABLE 3-2: PIN TYPES DESCRIPTION

Pin Type	Description
Power	This pin is used to supply power or ground to the device.
Hi-Power	This pin is a high-current pin.
AIO	Analog Input/Output - This pin is used as an I/O for analog signals.
DI	Digital Input - This pin is used as a digital input. This pin will be glitch-free.
DIOD	Open-Drain Digital Input/Output - This pin is bidirectional. It is open-drain and requires a pull-up resistor. This pin will be glitch-free.
OD	Open-Drain Digital Output - Used as a digital output. It is open-drain and requires a pull-up resistor. This pin will be glitch-free.
EP	Exposed Thermal Pad.

