imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

UCS81003

Automotive USB Port Power Controller with Charger Emulation

Features:

- Port Power Switch with Two Current Limit Behaviors
 - 2.9V to 5.5V source voltage range
 Up to 3.0A current (2.85A typical) with 55 mΩ
 - on resistanceOvercurrent trip or constant current limiting
 - Soft turn-on circuitry
 - Programmable current limit
 - Dynamic thermal management
 - Under and overvoltage lockout
 - Back-Drive, back-voltage protection
 - Latch or auto-recovery (low test current) fault handling
 - Selectable active-high or -low power switch enable
 - BC1.2 V_{BUS} discharge port renegotiation function
- Selectable/Automatic Cycling of Universal Serial Bus (USB) Data Line Charger Emulation Profiles
 - USB-IF BC1.2 Charging Downstream Port (CDP) and Dedicated Charging Port (DCP) modes, Chinese Telecommunications Industry Standard YD/T 1591-2009 and most Apple[®] Inc. and RIM[®] protocols standard; others as defined via the SMBus 2.0/I²C[™] protocol
 - Supports 12W charging emulation
 - USB 2.0 compliant high-speed data switch (in data pass-through, SDP and CDP modes)
 - Nine preloaded charger emulation profiles for maximum compatibility coverage of the peripheral devices
 - One custom-programmable charger emulation profile for portable device support for fully host-controlled charger emulation
- · Supports Active Cables
- Self-Contained Current Monitoring and Rationing for Power-Allocation Applications
- Low-Power Attach Detection and Open-Drain (A_DET#) Pin
- Ultra-Low Power Sleep State
- Optional Split Supply Support for V_S and V_{DD} for Low-Power in System Standby States
- · Wake on Attach USB
- SMBus 2.0/I²C Communications
- Supports block write and read
- Multiple SMBus addresses
- Wide Operating Temperature Range: -40°C to +85°C
- IEC61000-4-2 8/15 kV Electrostatic Discharge (ESD) Immunity

Description:

The UCS81003 provides a USB port power switch for precise control of up to 3.0A continuous current (2.85A typical) with Overcurrent Limit (OCL), dynamic thermal management, latch or auto-recovery (low-test current) fault handling, selectable active-low or -high enable, under and overvoltage lockout, back-drive protection and back-voltage protection.

Split supply support for V_S and V_{DD} is an option for low power in system standby states. This gives batteryoperated applications (such as on-board computers) the ability to detect attachments from a Sleep or Off state. After the Attach Detection is flagged, the system can decide to wake up and/or provide charging.

In addition to Power Switching and Current Limiting modes, the UCS81003 will automatically charge a wide variety of portable devices, including USB-IF BC1.2, YD/T-1591 (2009), most Apple Inc. and RIM, and many others. Nine preloaded charger emulation profiles maximize the compatibility coverage of the peripheral devices. Additionally, a customizable charger emulation profile is available to accommodate unique existing and future portable device handshaking/signature requirements.

The UCS81003 also provides current monitoring to allow intelligent management of system power and charge rationing for controlled delivery of current, regardless of the host power state. This is especially important for battery-operated applications that want to provide power and do not want to drain the battery excessively.

The UCS81003 is available in a 5 mm x 5 mm 28-pin VQFN package.

Applications:

- DC Power Socket Replacement
- Consumer USB Port Protection
- Consumer Device Charging Port
- · Auxiliary Box Charging Feature
- · Rear Seat Entertainment Consumer Access Point

UCS81003

Package Type

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Voltage on $V_{\text{DD}},V_{\text{S}}$ and V_{BUS} pins	0.3 to 6V
Pull-Up Voltage (V _{PULLUP})	0.3 to V _{DD} + 0.3V
Data Switch Current (I _{HSW_ON}), Switch On	±50 mA
Port Power Switch Current	Internally limited
Data Switch Pin Voltage To Ground (D _{POUT} , D _{PIN} , D _{MOUT} , D _{MIN}); (V _{DD} powered or unpowered)	0.3 to V _{DD} + 0.3V
Differential Voltage Across Open Data Switch (DPOUT - DPIN, DMOUT - DMIN, DPIN - DPOUT, DMIN -	D _{MOUT})V _{DD}
Voltage on any Other Pin to Ground	0.3 to V_{DD} + 0.3V
Current on any Other Pin	±10 mA
Package Power Dissipation	Table 1-1
Maximum Junction Temperature Under Bias	+125°C
Storage Temperature Range	55°C to +150°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Board	Package	θJC	ац ^θ	De-rating Factor Above +25°C	T _A < +25°C Power Rating	T _A < +70°C Power Rating	T _A < +85°C Power Rating
High K (see Note 1)	28-pin VQFN 5 x 5 mm	4°C/W	32°C/W	31.3 mW°/C	2470 mW	1220 mW	800 mW
Low K (see Note 1)	28-pin VQFN 5 x 5 mm	4°C/W	51°C/W	19.6 mW°/C	1620 mW	800 mW	530 mW

TABLE 1-1:POWER DISSIPATION SUMMARY

Note 1: Junction to ambient (θ_{JA}) is dependent on the design of the thermal vias. Without thermal vias and a thermal landing, the θ_{JA} is approximately 77°C/W, including localized PCB temperature increase. This θ_{JA} value is an estimate for a JEDEC[®] compliant 2S2P PCB with thermal vias.

TABLE 1-2: ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise specified, $V_{DD} = 4.5V$ to 5.5V, $V_S = 2.9V$ to 5.5V, $V_{PULLUP} = 3V$ to 5.5V, $T_J = -40^{\circ}$ C to $+125^{\circ}$ C; all Typical values at $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}$ C.

Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions
Power Supply						
Supply Voltage	V _{DD}	4.5	5	5.5	V	Note 1
Source Voltage	VS	2.9	5	5.5	V	Note 1
Supply Current in Active (I _{DD_ACTIVE} + I _{VS_ACT})	I _{ACTIVE}	_	650	750	μΑ	Average current $I_{BUS} = 0$ mA, T _J < +85°C

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

- 2: This parameter is ensured by design and is not 100% tested.
- 3: This parameter is characterized, but not 100% production tested.
- 4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if I_{BUS} R2MIN $\leq I_{LIM}$) or above I_{BUS} R2MIN (if I_{BUS} R2MIN > I_{LIM} and $I_{LIM} \leq 1.68A$).
- 5: The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

Electrical Characteristics: $T_{\perp} = -40^{\circ}C$ to $+125^{\circ}C$: all Ty	: Unless otherwise /pical values at V	e specified = Vs = חח	d, V _{DD} = 4 5V. T =	+.5V to 5.5 +27°C.	V, V _S = 2.9	V to 5.5V, $V_{PULLUP} = 3V$ to 5.5V
Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions
Supply Current in Sleep (I _{DD_SLEEP} + I _{VS_SLEEP})	I _{SLEEP}		5	15	μΑ	Average current V _{PULLUP} ≤ V _{DD} , T _J < +85°C
Supply Current in Detect (I _{DD_DETECT} + I _{VS_DETECT})	IDETECT	_	175	—	μΑ	Average current, no portable device attached
Power-On Reset						
V _S Low Threshold	V _{S_UVLO}	_	2.5	—	V	V _S voltage increasing
V _S Low Hysteresis	V _{S_UVLO_HYST}		100	—	mV	V _S voltage decreasing
V _{DD} Low Threshold	V _{DD_TH}		4	—	V	V _{DD} voltage increasing
V _{DD} Low Hysteresis	V _{DD_TH_HYST}		500	—	mV	V _{DD} voltage decreasing
I/O Pins - SMCLK, SMDAT	A, EM_EN, M1, I	M2, PWR_	EN, S0,	LATCH, A	LERT#, A	DET# – DC Parameters
Output Low Voltage	V _{OL}	_	—	0.4	V	I _{SINK_IO} = 8 mA SMDATA, ALERT#, A_DET#
Input High Voltage	V _{IH}	2.1	—	—	V	PWR_EN, EM_EN, M1, M2, LATCH, S0, SMDATA, SMCL
Input Low Voltage	V _{IL}		—	0.8	V	PWR_EN, EM_EN, M1, M2, LATCH, S0, SMDATA, SMCLk
Leakage Current	I _{LEAK}	_	—	±5	μA	Powered or unpowered, $V_{PULLUP} \leq V_{DD}$, $T_J < +85^{\circ}C$
Interrupt Pins - AC Param	eters					
ALERT#, A_DET# Pin Blanking Time	t _{BLANK}	_	25	—	ms	
ALERT# Pin Interrupt Masking Time	t _{MASK}	_	5	—	ms	
SMBus/I ² C™ Timing			•	•	•	
Input Capacitance	C _{IN}		5	_	pF	
Clock Frequency	f _{SMB}	10	—	400	kHz	
Spike Suppression	t _{SP}		_	50	ns	Note 2
Bus Free Time Stop to Start	t _{BUF}	1.3	—	—	μs	
Start Setup Time	t _{SU:STA}	0.6	_	- 1	μs	
Start Hold Time	t _{HD:STA}	0.6	_	_	μs	
Stop Setup Time	tsu⋅sto	0.6	_	_	μs	

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

0

0.3

0.6

1.3

0.6

2: This parameter is ensured by design and is not 100% tested.

t_{HD:DAT}

t_{HD:DAT}

t_{SU:DAT}

tLOW

t_{HIGH}

- 3: This parameter is characterized, but not 100% production tested.
- 4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if $I_{BUS_R2MIN} \le I_{LIM}$) or above I_{BUS_R2MIN} (if $I_{BUS_R2MIN} > I_{LIM}$ and $I_{LIM} \le 1.68A$).

5: The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

Data Hold Time

Data Hold Time

Data Setup Time

Clock Low Period

Clock High Period

When transmitting to the master

When receiving from the master

μs

μs

μs

μs

μs

Electrical Characteristics: Unless otherwise specified, $V_{DD} = 4.5V$ to 5.5V, $V_S = 2.9V$ to 5.5V, $V_{PULLUP} = 3V$ to 5.5V, $T_J = -40^{\circ}$ C to $+125^{\circ}$ C; all Typical values at $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}$ C.

0	/1	00	<i>,</i> 0			
Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions
Clock/Data Fall Time	t _{FALL}	—	_	300	ns	$Min = 20 + 0.1 C_{LOAD} ns, Note 3$
Clock/Data Rise Time	t _{RISE}	—	—	300	ns	$Min = 20 + 0.1 C_{LOAD} \text{ ns}, \text{ Note 3}$
Capacitive Load	C _{LOAD}	—	—	400	pF	Per bus line, Note 2
Timeout	t _{TIMEOUT}	25	—	35	ms	Disabled by default, Note 2
Idle Reset	t _{IDLE_RESET}	350	—	—	μs	Disabled by default, Note 2
High-Speed Data Switch			•	•	•	
	High-Sp	beed Data	Switch -	DC Parar	neters	
Switch Leakage Current	I _{HSW_OFF}	—	±0.5	—	μA	Switch open - D_{PIN} to D_{POUT} , D_{MIN} to D_{MOUT} , or all four pins to ground. V _{DD} \leq V _S
Charger Resistance	R _{CHG}	—	2	—	MΩ	D _{POUT} or D _{MOUT} to V _{BUS} or ground (see Figure 1-2), BC1.2 DCP charger emulation active
On Resistance	R _{ON_HSW}	—	2	—	Ω	Switch closed, $V_{DD} = 5V$ test current = 8 mA, test voltage = 0.4V, see Figure 1-2
On Resistance	R _{ON_HSW_1}	—	5	—	Ω	Switch closed, $V_{DD} = 5V$, test current = 8 mA, test voltage = 3.0V, see Figure 1-2
Delta-On Resistance	$\Delta R_{ON_{HSW}}$	—	±0.3	_	Ω	Switch closed, $V_{DD} = 5V$, $I_{TST} = 8 \text{ mA}$, $V_{TST} = 0 \text{ to } 1.5V$, see Figure 1-2
	High-Sp	beed Data	Switch -	AC Parar	neters	·
D _P , D _M Capacitance to Ground	C _{HSW_ON}	—	4	—	pF	Switch closed, $V_{DD} = 5V$
D _P , D _M Capacitance to Ground	C _{HSW_OFF}		2	—	pF	Switch open, $V_{DD} = 5V$
Turn Off Time	t _{HSW_OFF}	—	400	—	μs	Time from state control (EM_EN, M1, M2) switch on to switch off, $R_{TERM} = 50\Omega$, $C_{LOAD} = 5 \text{ pF}$
Turn-On Time	t _{HSW_ON}	—	400		μs	Time from state control (EM_EN, M1, M2) switch off to switch on, $R_{TERM} = 50\Omega$, $C_{LOAD} = 5 \text{ pF}$
Propagation Delay	t _{PD}		0.25	_	ns	$R_{TERM} = 50\Omega, C_{LOAD} = 5 \text{ pF}$

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

2: This parameter is ensured by design and is not 100% tested.

3: This parameter is characterized, but not 100% production tested.

4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if $I_{BUS_R2MIN} \le I_{LIM}$) or above I_{BUS_R2MIN} (if $I_{BUS_R2MIN} > I_{LIM}$ and $I_{LIM} \le 1.68A$).

5: The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

TABLE 1-2:	ELECTRICAL CHARACTERISTICS (CONTINUED))
------------	-------------------------------------	------------	---

Electrical Characteristics: Unless otherwise specified, $V_{DD} = 4.5V$ to 5.5V, $V_S = 2.9V$ to 5.5V, $V_{PULLUP} = 3V$ to 5.5V,
 $T_J = -40^{\circ}C$ to $+125^{\circ}C$; all Typical values at $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}C$.CharacteristicSymMaxLInitConditions

Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions		
Propagation Delay Skew	∆t _{PD}	—	25	—	ps	$R_{TERM} = 50\Omega, C_{LOAD} = 5 \text{ pF}$		
Rise/Fall Time	t _{F/R}	—	10	—	ns	$R_{TERM} = 50\Omega, C_{LOAD} = 5 \text{ pF}$		
D _P – D _M Crosstalk	X _{TALK}	—	-40	—	dB	$R_{TERM} = 50\Omega, C_{LOAD} = 5 \text{ pF}$		
Off Isolation	O _{IRR}		-30	_	dB	R_{TERM} = 50Ω, C_{LOAD} = 5 pF, f = 240 MHz		
-3 dB Bandwidth	BW	_	1100	_	MHz	$R_{TERM} = 50\Omega$, $C_{LOAD} = 5 pF$, $V_{DPOUT} = V_{DMOUT} = 350 mV DC$		
Total Jitter	tj	_	200	_	ps	$R_{TERM} = 50\Omega$, $C_{LOAD} = 5 pF$, Rise Time = Fall Time = 500 ps at 480 Mbps (PRBS = $2^{15} - 1$)		
Skew of Opposite Transitions of the Same Output	t _{SK(P)}	_	20	_	ps	R_{TERM} = 50Ω, C_{LOAD} = 5 pF		
Port Power Switch								
	Port	Power Sv	witch - D	C Parame	ter			
Overvoltage Lockout	V _{S_OV}	—	6	_	V			
On Resistance	R _{ON_PSW}	—	55	_	mΩ	4.75V < V _S < 5.25V		
V _S Leakage Current	I _{LEAK_VS}	—	2.22	—	μΑ	Sleep state into V _S pin		
Back-Voltage Protection Threshold	V _{BV_TH}	—	150	—	mV	$V_{BUS} > V_S,$ $V_S > V_{S_UVLO}$		
Back-Drive Current	I _{BD_1}	_	0	3	μA	V _{DD} < V _{DD_TH} , Any powered power pin to any unpowered power pin. Current out of unpowered pin (Note 3).		
	I _{BD_2}		0	2	μΑ	$V_{DD} < V_{DD_TH}$, Any powered power pin to any unpowered power pin, except for V_{DD} to V_{BUS} in Detect power state and V_S to V_{BUS} in Active Power state. Current out of unpowered pin (Note 3).		

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

2: This parameter is ensured by design and is not 100% tested.

3: This parameter is characterized, but not 100% production tested.

4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if $I_{BUS_R2MIN} \le I_{LIM}$) or above I_{BUS_R2MIN} (if $I_{BUS_R2MIN} > I_{LIM}$ and $I_{LIM} \le 1.68A$).

5: The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

Electrical Characteristics: U	nless otherwise specifie	d, V _{DD} = 4	.5V to 5.5	V, V _S = 2.9	V to 5.5V, V _{PULLU}	_{JP} = 3V to 5.5V,
$T_J = -40^{\circ}C$ to $+125^{\circ}C$; all Typi	cal values at V _{DD} = V _S =	= 5V, T _J =	+27°C.			

Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions
Selectable Current Limits	I _{LIM1}		570	—	mA	I _{LIM} Resistor = 0 or 47 kΩ (minimum mA setting)
	I _{LIM2}	—	1000	—		I_{LIM} Resistor = 10 k Ω or 56 k Ω
	I _{LIM3}	—	1130	—		I_{LIM} Resistor = 12 k Ω or 68 k Ω
	I _{LIM4}	—	1350	—		I_{LIM} Resistor = 15 k Ω or 82 k Ω
	I _{LIM5}	—	1680	—		I_{LIM} Resistor = 18 k Ω or 100 k Ω
	I _{LIM6}	—	2050	—		I_{LIM} Resistor = 22 k Ω or 120 k Ω
	I _{LIM7}	—	2280	—		I_{LIM} Resistor = 27 k Ω or 150 k Ω
	I _{LIM8}	—	2850	3000		I_{LIM} Resistor = 33 k Ω or V_{DD}
Pin Wake Time	^t PIN_WAKE	—	3	—	ms	
SMBus Wake Time	t _{SMB_WAKE}	—	4	—	ms	
Idle Sleep Time	t _{IDLE_SLEEP}	_	200	—	ms	
Thermal Regulation Limit	T _{REG}		110	—	°C	Die Temperature at which current limit will be reduced.
Thermal Regulation Hysteresis	T _{REG_HYST}	—	10	—	°C	Hysteresis for t_{REG} functionality. Temperature must drop by this value before I_{LIM} value restored to normal operation.
Thermal Shutdown Threshold	T _{TSD}		135	—	°C	Die Temperature at which port power switch will turn off.
Thermal Shutdown Hysteresis	T _{TSD_HYST}	_	35	_	°C	After Shutdown due to T_{TSD} being reached, a die temperature drop is required before port power switch can be turned on again.
Auto-Recovery Test Current	I _{TEST}	—	190	—	mA	Portable device attached, V _{BUS} = 0V, Die Temp < T _{TSD}
Auto-Recovery Test Voltage	V _{TEST}	_	750	_	mV	$\begin{array}{l} \mbox{Portable device attached,} \\ V_{BUS} = 0V \mbox{ before application,} \\ \mbox{Die Temp} < T_{TSD} \\ \mbox{Programmable,} \\ \mbox{250 - 1000 mV, default listed} \end{array}$
Discharge Impedance	R _{DISCHARGE}	—	100	—	Ω	

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

- **2:** This parameter is ensured by design and is not 100% tested.
- **3:** This parameter is characterized, but not 100% production tested.
- 4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if $I_{BUS_R2MIN} \le I_{LIM}$) or above I_{BUS_R2MIN} (if $I_{BUS_R2MIN} > I_{LIM}$ and $I_{LIM} \le 1.68A$).
- 5: The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

$I_J = -40^{\circ}$ C to $+125^{\circ}$ C; all Typical values at $v_{DD} = v_S = 5V$, $I_J = +27^{\circ}$ C.										
Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions				
Port Power Switch - AC Parameters										
Turn-On Delay	t _{ON_PSW}	_	0.75	_	ms	PWR_EN active toggle to switch on time, V _{BUS} discharge not active.				
Turn-Off Time	^t off_psw_ina		0.75		ms	PWR_EN inactive toggle to switch off time C_{BUS} = 120 μ F				
Turn-Off Time	t _{OFF_PSW_ERR}		1	—	ms	Overcurrent Error, V_{BUS} Min Error, or Discharge Error to switch off, C_{BUS} = 120 µF				
Turn-Off Time	t _{OFF_PSW_ERR}	—	100	—	ns	TSD or back-drive error to switch off, C_{BUS} = 120 μ F				
V _{BUS} Output Rise Time	t _{R_BUS}	—	1.1	_	ms	Measured from 10% to 90% of V _{BUS} , C _{LOAD} = 220 μ F, I _{LIM} = 1.0A				
Soft Turn-On Rate	$\Delta I_{BUS} / \Delta_t$	—	100	—	mA/μs					
Temperature Update Time	t _{DC_TEMP}	—	200	—	ms	Programmable 200 - 1600 ms, default listed				
Short-Circuit Response Time	t _{SHORT_LIM}	—	1.5		μs	Time from detection of short to current limit applied. No C _{BUS} applied.				
Short-Circuit Detection Time	t _{short}	—	6	_	ms	Time from detection of short to port power switch disconnect and ALERT# pin assertion.				
Latched Mode Cycle Time	t _{UL}	—	7	_	ms	From PWR_EN edge transition from inactive to active to begin error recovery.				
Auto-Recovery Mode Cycle Time	^t cycle	_	25	_	ms	Time delay before error condition check. Programmable 10-25 ms, default listed.				
Auto-Recovery Delay	t _{RST}	_	20		ms	Portable device attached, V_{BUS} must be $\geq V_{TEST}$ after this time. Programmable 10-25 ms, default listed.				
Discharge Time	^t discharge	_	200	_	ms	Amount of time discharge resistor applied. Programmable 100-400 ms, default listed.				

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

2: This parameter is ensured by design and is not 100% tested.

3: This parameter is characterized, but not 100% production tested.

- 4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if $I_{BUS_R2MIN} \le I_{LIM}$) or above I_{BUS_R2MIN} (if $I_{BUS_R2MIN} > I_{LIM}$ and $I_{LIM} \le 1.68A$).
- **5:** The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

Electrical Characteristics $T_J = -40^{\circ}C$ to $+125^{\circ}C$; all T_J	: Unless otherwis /pical values at V	e specifiec _{DD} = V _S =	I, V _{DD} = 4 5V, T _J =	.5V to 5.5 +27°C.	V, V _S = 2.9	V to 5.5V, $V_{PULLUP} = 3V$ to 5.5V,
Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions
Po	ort Power Switcl	n Operatio	on With T	rip Mode	Current L	imiting
Region 2 Current Keep-Out	I _{BUS_R2MIN}		0.12	—	А	
Minimum V _{BUS} Allowed at Output	V _{BUS_MIN}	1.5	2.0	2.25	V	Note 5
Port Powe	er Switch Opera	tion with	Constant	Current	Limiting (Variable Slope)
Region 2 Current Keep-Out	I _{BUS_R2MIN}	_	1.68	—	А	
Minimum V _{BUS} Allowed at Output	V _{BUS_MIN}	1.5	2.0	2.25	V	Note 5
		Current M	easurem	ent - DC		•
Current Measurement Range	I _{BUS_M}	0		2988.6	mA	Range 0 – 255 LSB (see Note 4)
Reported Current Measurement Resolution	D _{IBUS_M}	_	11.72	_	mA	1 LSB
Current Measurement		—	±2	_	%	180 mA < I _{BUS} < I _{LIM}
Accuracy		_	±2	—	LSB	I _{BUS} < 180 mA
	(Current M	easurem	ent - AC		
Sampling Rate		_	500	—	μs	
		Charge	Rationin	g - DC		
Accumulated Current Measurement Accuracy		—	±4.5	—	%	
		Charge	Rationin	g - AC		
Current Measurement Update Time	^t PCYCLE	—	1	_	s	
Attach/Removal Detection	ı					
		V _{BUS}	Bypass -	DC		
On Resistance	R _{ON_BYP}	—	50	—	Ω	
Leakage Current	I _{LEAK_BYP}	_	_	3	μA	Switch off, $T_A < +85^{\circ}C$, Note 2
Current Limit	I _{DE-} T_CHG/I _{BUS_BY} P	_	2	_	mA	$V_{DD} = 5V$ and $V_{BUS} > 4.75V$
	Att	ach/Rem	oval Dete	ection - D	0	
Attach Detection Threshold	I _{DET_QUAL}	_	800	—	μA	Programmable 200 – 1000 μ A, default listed.

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

2: This parameter is ensured by design and is not 100% tested.

3: This parameter is characterized, but not 100% production tested.

4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if $I_{BUS_R2MIN} \le I_{LIM}$) or above I_{BUS_R2MIN} (if $I_{BUS_R2MIN} > I_{LIM}$ and $I_{LIM} \le 1.68A$).

5: The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

Electrical Characteristics $T_J = -40^{\circ}$ C to $+125^{\circ}$ C; all T	: Unless otherwise ypical values at V	e specified _{DD} = V _S =	d, V _{DD} = 4 5V, T _J =	.5V to 5.5' +27°C.	V, V _S = 2.9	$9V$ to 5.5V, $V_{PULLUP} = 3V$ to 5.5V,
Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions
Primary Removal Detection Threshold	IREM_QUAL_ACT	—	700	—	μA	Programmable 100 – 900 μA, default listed, Active Power state
		_	800	_	μΑ	Programmable 200 – 1000 μA, default listed, Detect power state (see Section 8.4 " Removal Detection ").
	Att	ach/Rem	oval Dete	ection - A	C	
Attach Detection Time	^t DET_QUAL	_	100	—	ms	Time from Attach to A_DET# assert
Removal Detection Time	t _{REM_QUAL}	—	1000	—	ms	
Allowed Charge Time	^t DET_CHARGE	_	800	—	ms	$C_{BUS} = 500 \ \mu F$ maximum, Programmable 200 - 2000 ms, default listed.
Charger Emulation Profile	e					
		General	Emulatio	on - DC		
Charging Current Threshold	I _{BUS_CHG}	_	175.8	—	mA	Default
Charging Current Threshold Range	I _{BUS_CHG_RNG}	11.72	_	175.8	mA	Note 5
DP-DM Shunt Resistor Value	R _{DCP_RES}		—	200	Ω	Connected between D_{POUT} and D_{MOUT} , $0V < D_{POUT} = D_{MOUT} < 3V$
Response Magnitude (voltage divider option resistance range)	SX_RXMAG_DVDR	93	—	200	kΩ	Note 5
Resistor Ratio Range (voltage divider option)	SX_RATIO	0.25	_	0.66	V/V	Note 5
Resistor Ratio Accuracy (voltage divider option)	SX_RATIO_ACC	—	±0.5	—	%	Average over range
Response Magnitude (resistor option range)	SX_RXMAG_RES	1.8	_	150	kΩ	Note 5
Internal Resistor Tolerance (resistor option)	SX_RXMAG_RES _ACC	—	±10	—	%	Average over range
Response Magnitude (voltage option range)	SX_RXMAG_VOLT	0.4	_	2.2	V	Note 5
Voltage Option Accuracy	SX_RXMAG_VOLT _ACC	—	±1	—	%	No load, average over range
Voltage Option Accuracy	SX_RXMAG_VOLT _ACC_ 150	_	-6		%	150 μA load, average over range
Voltage Option Accuracy	SX_RXMAG_VOLT _ACC_250	_	-10		%	250 μA load, average over range

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

- 2: This parameter is ensured by design and is not 100% tested.
- **3:** This parameter is characterized, but not 100% production tested.
- 4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if $I_{BUS_R2MIN} \le I_{LIM}$) or above I_{BUS_R2MIN} (if $I_{BUS_R2MIN} > I_{LIM}$ and $I_{LIM} \le 1.68A$).
- **5:** The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the range is typical.

Range

Stimulus Delay,

SX_TD Range **Emulation Delay**

Emulation Timeout Range

TABLE 1-2: ELECTRICAL CHARACTERISTICS (CONTINUED)						
Electrical Characteristics: Unless otherwise specified, $V_{DD} = 4.5V$ to 5.5V, $V_S = 2.9V$ to 5.5V, $V_{PULLUP} = 3V$ to 5.5V, $T_J = -40^{\circ}$ C to $+125^{\circ}$ C; all Typical values at $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}$ C.						
Characteristic	Sym.	Min.	Тур.	Max.	Unit	Conditions
Voltage Option Output	SX_RXMAG_VOLT _BC	0.5	_	—	V	D _{MOUT} = 0.6V, 250 μA load, Note 3
Response Magnitude (Zero Volt Option Range)	SX_PUPD	10	_	150	μΑ	SX_RXMAG_VOLT = 0 Note 5
Pull-Down Current Accuracy	SX_PUPD _ACC_3p6		±5	—	%	D _{POUT} or D _{MOUT} = 3.6V Compliance voltage
Pull-Down Current	SX_PUPD _ACC_BC	50	_		μA	Setting = $100 \ \mu A$ D _{POUT} or D _{MOUT} = $0.15V$ Compliance voltage, Note 3
Stimulus Voltage Threshold Range	SX_TH	0.3	_	2.2	V	Note 5
Stimulus Voltage Accuracy	SX_TH_ACC	_	±2	_	%	Average over range
Stimulus Voltage Accuracy	SX_TH_ACC_BC	0.25	—		V	At SX_TH = 0.3V, Note 3
General Emulation - AC						
Emulation Reset Time	t _{EM_RESE} T	_	50	—	ms	Default
Emulation Reset Time	tem reset rng	50	_	175	ms	Note 5

0.8

0

Note 1: For split supply systems using the Attach Detection feature, V_S must not exceed V_{DD} + 150 mV.

tem_ timeout

t_{STIM_DEL}

t_{RES_EM}

2: This parameter is ensured by design and is not 100% tested. 3: This parameter is characterized, but not 100% production tested.

4: The current measurement full-scale range maximum value is 3.0A. However, the UCS81003 cannot report values above I_{LIM} (if I_{BUS R2MIN} \leq I_{LIM}) or above I_{BUS R2MIN} (if I_{BUS R2MIN} > I_{LIM} and I_{LIM} \leq 1.68A).

12.8

100

0.5

s

ms

s

Note 5

Note 5

Note 3.

Time from set impedance to

impedance appears on D_P/D_M,

The Minimum and Maximum values represent the boundaries of a programmable range. Each value in the 5: range is typical.

UCS81003

FIGURE 1-2:

Description of DC Terms.

TABLE 1-3: TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Operating Temperature Range	Τ _Α	-40	_	+85	°C	
Storage Temperature Range	T _A	-55	_	+150	°C	
Thermal Package Resistances - see Table 1-1						

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}C$.

FIGURE 2-1: USB-IF High-Speed Eye Diagram (Without Data Switch).

FIGURE 2-2: USB-IF High-Speed Eye Diagram (With Data Switch).

Power-Up.

6 14 V_{BUS} $V_{s} = V_{DD} = 5V,$ $I_{LIM} = 2.05A$ (typical), short applied at 17.2 µs 5 12 10 4 Voltage (V) 3 8 ₹ Current 2 6 1 4 2 0 IBUS 0 -1 -2 -2 0 20 40 Time (µs)

FIGURE 2-5: Internal Power Switch Short Response.

Note: Unless otherwise indicated, $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}C$.

FIGURE 2-8: Frequency.

Data Switch Bandwidth vs.

FIGURE 2-9: vs. Temperature.

FIGURE 2-10: Power Switch On Resistance vs. Temperature.

FIGURE 2-11: R_{DCP_RES} Resistance vs.Temperature.

FIGURE 2-12: Power Switch On/Off Time vs. Temperature.

UCS81003

Note: Unless otherwise indicated, $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}C$.

FIGURE 2-13: V_S Overvoltage Threshold vs. Temperature.

FIGURE 2-14: V_S Undervoltage Threshold vs. Temperature.

FIGURE 2-15:

Detect State V_{BUS} vs. I_{BUS}.

FIGURE 2-16: Trip Current Limit Operation vs. Temperature.

FIGURE 2-17: I_{BUS} Measurement Accuracy.

FIGURE 2-18: Active State Current vs. Temperature.

Note: Unless otherwise indicated, $V_{DD} = V_S = 5V$, $T_J = +27^{\circ}C$.

FIGURE 2-19: Detect State Current vs. Temperature.

Temperature.

3.0 PIN DESCRIPTION

The description of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

UCS81003 5x5 VQFN	Symbol	Function	Pin Type	Connection Type if Pin Not Used
1	NC	Not internally connected	n/a	Leave open
2	M1	Active mode selector input #1	DI	Connect to ground or V _{DD} (see Note 3)
3	M2	Active mode selector input #2	DI	Connect to ground or V _{DD} (see Note 3)
4	V _{BUS1}	Voltage output from Power Switch.	Hi-Power	Leave open
5	V _{BUS2}	These pins are internally connected and must be	Note 1	
6	V _{BUS3}	tied together.		
7	7 COMM_SEL/I _{LIM}	COMM_SEL - Selects SMBus or Stand-alone mode of operation (see Table 11-1).	AIO	n/a
	I _{LIM} - Selects the hardware current limit at power-up.			
8	SEL	Selects polarity of PWR_EN control and SMBus address (see Table 11-2).	AIO	n/a
9	V _{S1}	Voltage input to Power Switch. These pins are	Hi-Power	Connect to ground
10	V _{S2}	internally connected and must be tied together.	ether.	
11	V _{S3}			
12	V _{DD}	Main power supply input for chip functionality	Power	n/a
13	PWR_EN	Port power switch enable input. Polarity determined by SEL pin.	DI	Connect to ground or V _{DD} (see Note 3)
14	NC	Not internally connected	n/a	Leave open
15	NC	Not internally connected	n/a	Leave open

Note 1: Total leakage current from pins 4, 5 and 6 (V_{BUS}) to ground must be less than 100 µA for proper attach/removal detection operation.

2: It is recommended to use 2 MΩ pull-down resistors on the D_{POUT} and/or D_{MOUT} pin if a portable device stimulus is expected when using the Customer Charger Emulation profile with the high-speed data switch open. The 2 MΩ value is based on BC1.1 impedance characteristics for Dedicated Charging Ports.

3: To ensure operation, the PWR_EN pin must be enabled, as determined by the SEL pin decode, when it is not driven by an external device. Furthermore, one of the M1, M2 or EM_EN pins must be connected to V_{DD} if all three are not driven from an external device. If the PWR_EN pin is disabled or all of the M1, M2 and EM_EN pins are connected to ground, the UCS81003 will remain in the Sleep or Detect state unless activated via the SMBus.

TABLE 3-1: PIN FUNCTION TABLE

UCS81003 5x5 VQFN	Symbol	Function	Pin Type	Connection Type if Pin Not Used
16	SMDATA/LATCH	SMDATA - SMBus data input/output (requires pull-up resistor)	DIOD	n/a
		LATCH - In Stand-Alone mode, Latch/Auto-recovery fault handling mechanism selection input (see Section 7.5 "Fault Handling Mechanism")	DI	
17	SMCLK/S0	SMCLK - SMBus Clock Input (requires pull-up resistor)	DI	n/a
		S0 - In Stand-Alone mode, enables Attach/Removal Detection feature (see Section 5.3.6 "S0 Input")		
18	ALERT#	Active low error event output flag (requires pull-up resistor)	OD	Connect to ground
19	D _{PIN}	USB data input (plus)	AIO	Connect to ground or ground through a resistor
20	D _{MIN}	USB data input (minus)	AIO	Connect to ground or ground through a resistor
21	NC	Not internally connected	n/a	Leave open
22	NC	Not internally connected	n/a	Leave open
23	D _{MOUT}	USB data output (minus)	AIO (see Note 2)	Connect to ground
24	D _{POUT}	USB data output (plus)	AIO (see Note 2)	Connect to ground
25	A_DET#	Active low device Attach Detection output flag (requires pull-up resistor)	OD	Connect to ground
26	EM_EN	Active mode selector input	DI	Connect to ground or V _{DD} (see Note 3)
27	GND	Ground	Power	n/a
28	NC	Not internally connected	n/a	Leave open
29	EP	Exposed Thermal Pad. Must be connected to the electrical ground.	EP	n/a

Note 1: Total leakage current from pins 4, 5 and 6 (V_{BUS}) to ground must be less than 100 µA for proper attach/removal detection operation.

2: It is recommended to use 2 MΩ pull-down resistors on the D_{POUT} and/or D_{MOUT} pin if a portable device stimulus is expected when using the Customer Charger Emulation profile with the high-speed data switch open. The 2 MΩ value is based on BC1.1 impedance characteristics for Dedicated Charging Ports.

3: To ensure operation, the PWR_EN pin must be enabled, as determined by the SEL pin decode, when it is not driven by an external device. Furthermore, one of the M1, M2 or EM_EN pins must be connected to V_{DD} if all three are not driven from an external device. If the PWR_EN pin is disabled or all of the M1, M2 and EM_EN pins are connected to ground, the UCS81003 will remain in the Sleep or Detect state unless activated via the SMBus.

Pin Type	Description
Power	This pin is used to supply power or ground to the device
Hi-Power	This pin is a high-current pin
AIO	Analog Input/Output - this pin is used as an I/O for analog signals.
DI	Digital Input - this pin is used as a digital input. This pin will be glitch-free.
DIOD	Open-Drain Digital Input/Output - this pin is bidirectional. It is open-drain and requires a pull-up resistor. This pin will be glitch-free.
OD	Open-Drain Digital Output - used as a digital output. It is open-drain and requires a pull-up resistor. This pin will be glitch-free.
EP	Exposed Thermal Pad

TABLE 3-2: PIN TYPES DESCRIPTION

4.0 TERMS AND ABBREVIATIONS

Note: The M1, M2, PWR_EN and EM_EN pins each have configuration bits (<pin name>_SET in Section 10.4.3 "Switch Configuration Register") that may be used to perform the same function as the external pin state. These bits are accessed via the SMBus/I²C and are OR'd with the respective pin. This OR'd combination of pin state and register bit is referenced as the <pin name> control.

TABLE 4-1: TERMS AND ABBREVIATIONS

Term/Abbreviation	Description
Active mode	Active power state operation mode: Data Pass-through, BC1.2 SDP, BC1.2 CDP, BC1.2 DCP or Dedicated Charger Emulation Cycle.
Attach Detection	An Attach Detection event occurs when the current drawn by a portable device is greater than I_{DET_QUAL} for longer than t_{DET_QUAL} .
Attachment	The physical insertion of a portable device into a USB port that UCS81003 is controlling.
CC	Constant Current
CDM	Charged Device Model. JEDEC [®] model for characterizing susceptibility of a device to damage from ESD.
CDP or USB-IF BC1.2 CDP	Charging Downstream Port. The combination of the UCS81003 CDP handshake and an active standard USB host comprises a CDP. This enables a BC1.2 compliant portable device to simultaneously draw current up to 1.5A while data communication is active. The USB high-speed data switch is closed in this mode.
Charge Enable	When a charger emulation profile has been accepted by a portable device and charging commences.
Charger Emulation Profile	Representation of a charger comprised of D_{POUT} , D_{MOUT} and V_{BUS} signaling, which make up a defined set of signatures or handshaking protocols.
Connection	USB-IF term which refers to establishing active USB communications between a USB host and a USB device.
Current Limiting Mode	Determines the action that is performed when the I_{BUS} current reaches the I_{LIM} threshold. Trip opens the port power switch. Constant Current (variable slope) allows V_{BUS} to be dropped by the portable device.
DCE	Dedicated Charger Emulation. Charger emulation in which the UCS81003 can deliver power only (by default). No active USB data communication is possible when charging in this mode (by default).
DCP or USB-IF BC1.2 DCP	Dedicated Charging Port. This functions as a dedicated charger for a BC1.2 portable device. This allows the portable device to draw currents up to 1.5A with Constant Current Limiting (and beyond 1.5A with Trip Current Limiting). No USB communications are possible (by default).
DC	Dedicated Charger. A charger which inherently does not have USB communications, such as an A/C wall adapter.
Disconnection	USB-IF term which refers to the loss of active USB communications between a USB host and a USB device.
Dynamic Thermal Management	The UCS81003 automatically adjusts port power switch limits and modes to lower internal power dissipation when the thermal regulation temperature value is approached.
Enumeration	A USB-specific term indicating that a host is detecting and identifying USB devices.
Handshake	Application of a charger emulation profile that requires a response. Two-way communication between the UCS81003 and the portable device.
НВМ	Human Body Model
HSW	High-Speed switch
I _{BUS R2MIN}	Current limiter mode boundary

Term/Abbreviation	Description
I _{LIM}	The I _{BUS} current threshold used in current limiting. In Trip mode, when I _{LIM} is reached, the port power switch is opened. In Constant Current mode, when the current exceeds I _{LIM} , operation continues at a reduced voltage and increased current; if V _{BUS} voltage drops below V _{BUS_MIN} , the port power switch is opened.
Legacy	USB devices that require non-BC1.2 signatures be applied on the D _{POUT} and D _{MOUT} pins to enable charging.
OCL	Overcurrent limit
POR	Power-on Reset
Portable Device	USB device attached to the USB port.
Power Thief	A USB device that does not follow the handshaking conventions of a BC1.2 device or Legacy devices and draws current immediately upon receiving power (i.e., a USB book light, portable fan, etc).
Removal Detection	A Removal Detection event occurs when the current load on the V_{BUS} pin drops to less than I_{REM_QUAL} for longer than t_{REM_QUAL} .
Removal	The physical removal of a portable device from a USB port that the UCS81003 is controlling.
Response	An action, usually in response to a stimulus, in charger emulation performed by the UCS81003 device via the USB data lines.
SDP or USB-IF SDP	Standard downstream port. The combination of the UCS81003 high-speed switch being closed with an upstream USB host present comprises a BC1.2 SDP. This enables a BC1.2 compliant portable device to simultaneously draw current up to 0.5A while data communication is active.
Signature	Application of a charger emulation profile without waiting for a response. One-way communi- cation from the UCS81003 to the portable device.
Stand-Alone Mode	Indicates that the communications protocol is not active and all communications between the UCS81003 and a controller are done via the external pins only (M1, M2, EM_EN, PWR_EN, S0 and LATCH as inputs, and ALERT# and A_DET# as outputs).
Stimulus	An event in charger emulation detected by the UCS81003 device via the USB data lines.

TABLE 4-1: TERMS AND ABBREVIATIONS (CONTINUED)

5.0 GENERAL DESCRIPTION

The UCS81003 provides a single USB port power switch for precise control of up to 3.0A continuous current with overcurrent limit (OCL), dynamic thermal management, latch or auto-recovery fault handling, selectable active-low or -high enable, under and overvoltage lockout, and back-voltage protection.

Split supply support for V_{BUS} and V_{DD} is an option for low power in system standby states.

In addition to power switching and current limiting, the UCS81003 provides automatic and configurable charger emulation profiles to charge a wide variety of portable devices, including USB-IF BC1.2 (CDP or DCP modes), YD/T-1591 (2009), 12W charging, most Apple and RIM portable devices and many others.

The UCS81003 also provides current monitoring to allow intelligent management of system power and charge rationing for controlled delivery of current regardless of the host power state. This is especially important for battery-operated applications that need to provide power without excessively draining the battery, or that require power allocation depending on application activities.

Figure 5-1 shows a UCS81003 full-featured system configuration in which the UCS81003 provides a port power switch and low-power Attach Detection with wake-up signaling (wake on USB). The current limit is established at power-up. It can be lowered if required after power-up via the SMBus/I²C. This configuration also provides configurable USB data line-charger emulation, programmable current limiting (as determined by the accepted charger emulation profile), active current monitoring and port charge rationing.

Figure 5-2 shows a system configuration in which the UCS81003 provides a USB data switch, port power switch, low-power Attach Detection and portable device Attach/Removal Detection signaling. This configuration does not include configurable data line charger emulation, programmable current limiting or current monitoring and rationing.

FIGURE 5-2: UCS81003 System Configuration (Charger Emulation, No SMBus, with USB Host).

Figure 5-3 shows a system configuration in which the UCS81003 provides a port power switch, low-power Attach Detection and portable device attachment detected signaling. This configuration is useful for applications that already provide USB BC1.2 and/or legacy data line handshaking on the USB data lines, but still require port power switching and current limiting.

