

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

μEZ® GUI User's Manual

Covers the following products:

uEZGUI-4088-43WQN (Dev Kit)
uEZGUI-4088-WQN-BA (Board Assembly)
uEZGUI-4088-43WQH (Dev Kit)
uEZGUI-4088-WQH-BA (Board Assembly)
uEZGUI-4088-43WQE (Dev Kit)
uEZGUI-4088-WQE-BA (Board Assembly)

43WQN and 43WQH Main Menu

43WQE Main Menu

NOTICE: At FDI we are constantly improving our documentation. Please get the latest version of this document in the documentation tab of the product page at www.TeamFDI.com

Table of Contents

1. Introduction	3
2. Block Diagram	
3. Kit Contents	
4. Useful links	
5. Functional Description	4
6. Startup procedure	
7. Demonstration Software Main Menu	5
a) Example Apps	5
b) Slideshow	6
c) Settings	7
8. Setting up a Slideshow	7
9. Setting up a Video	7
10. uEZ Doxygen online HTML documentation	8
11. μEZ Project Maker	8
12. Software	
13. Configuring Rowley CrossWorks CrossStudio for ARM® for J-Link Flashing	9
14. Configuring IAR EWARM v6.30 for J-Link Flashing	
15. Configuring Keil uVison 4 for J-Link Flashing	
16. Functional Test Software	
17. Board Layout	
18. I/O Connector Descriptions	
J5 - JTAG Connector	13
J12 - Tag Connect	14
J4 - MicroSD Socket	15
J3 - ISP Connector	16
J10 - Alternate Power and communication	17
J15 - PMOD Type 2A Connector	17
P1 – USB mini-AB port and USB Power Input 5VDC	17
J2 & J6 - Expansion Connectors	17
J2 & J6 - Expansion Connector Cable Details	21
19. Schematics	22
20. Temperature Range	
21. ESD Warning	
22. Real Time Clock Backup Time	
23. Power Requirements	
24. Mechanical Details	
25. Updating to UEZGUI-4088-43WQN-BA from UEZGUI-1788-43WQR-BA	25

Important Legal Information

Information in this document is provided solely to enable the use of Future Designs products. FDI assumes no liability whatsoever, including infringement of any patent or copyright. FDI reserves the right to make changes to these specifications at any time, without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Future Designs, Inc. 996 A Cleaner Way, Huntsville, AL 35805.

For more information on FDI or our products please visit www.teamfdi.com.

NOTE: The inclusion of vendor software products in this kit does not imply an endorsement of the product by Future Designs, Inc. © 2016 Future Designs, Inc. All rights reserved.

uEZ® is a registered trademark of Future Designs, Inc.
Microsoft, MS-DOS, Windows, Windows XP, Microsoft Word are registered trademarks of Microsoft Corporation.
Other brand names are trademarks or registered trademarks of their respective owners.

FDI Document PN: MA00039 Revision: 5, 01/18/2015

Printed in the United States of America

1. Introduction

The UEZGUI-4088-43WQN-BA/UEZGUI-4088-43WQH-BA/UEZGUI-4088-43WQE provide a quick and easy solution for implementing a Graphical User Interface (GUI) based design by providing the basic functions necessary for most customer products.

Below is a table showing the differences between the 3 part numbers – ALL other specifications are identical.

Part Number	Touch Type	Notes
UEZGUI-4088-43WQ <u>N</u>	PCAP	PCAP interface uses I2C interface
UEZGUI-4088-43WQ <u>H</u>	4-wire Resistive	Resistive uses GPIO & ADC interface
UEZGUI-4088-43WQ <u>E</u>	No Touch	No interfaces utilized

Note: In this document, whenever <u>UEZGUI-4088-WQN</u> is mentioned, it is assumed to include the <u>UEZGUI-4088-WQH</u> & UEZGUI-4088-WQE unless otherwise specified.

2. Block Diagram Power **PROGRAMMING** Tag-Connect SPIFI **MICRO** AND On **JTAG FLASH** DEBUG SD Reset **16MB** CARD **TSOP** MINI **USB JTAG** 4-bit SD Interface MINI-AB **5V INPUT POWER** USB DEVICE or HOST w/ SPIFI ADAPTER **ADDRESS** SDRAM 25 SIGNAL CONTROL 8MB to 32MB LPC4088 12 SIGNALS CONNECTOR EXPANSION **TSOP BGA** DATA BUS 32 SIGNALS **GPIO** NOR FLASH 45 MULTI-PURPOSE EXPANSION SIGNALS 8MB to 64MB (RMII, USB HOST, I2S, UARTS, I2C, SPI, ETC) PLUS ADDITIONAL FIXED USB AND RESET **TSOP** (OPT) **5V INPUT** Analog/PWM **POWER AUDIO AUDIO** I2C BUS **AMP JACK** LCD DISPLAY TOUCH **PANEL** 18BIT 3.3V **BACKLIGHT** LCD CONN Acel **TEMP GENERATOR BUZZER REG** (OPT SPKR)

Figure 1 – UEZGUI-4088-43WQN-BA Block Diagram

3. Kit Contents

- UEZGUI-4088-43WQN-BA module with 4.3" Capacitive Touch LCD Screen or
- UEZGUI-4088-43WQH-BA module with 4.3" 4-Wire Resistive Touch LCD Screen or
- UEZGUI-4088-43WQE-BA module with 4.3" No-touch LCD Screen
- Segger Mini-JTAG Debugger and cable
- FDI JTAG Adapter Board
- Micro SD card
- USB Power/Data Cable (A to mini B)
- AC to USB Power Supply
- Quick Start Guide

4. Useful links

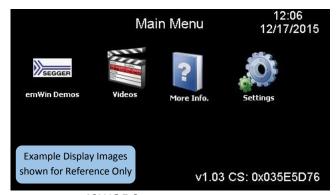
Complete User's Manuals, Schematics, and documentation are available on the Micro-SD card provided with the μ EZGUI Kit and are also available from the following websites (please refer to the websites for the latest updates):

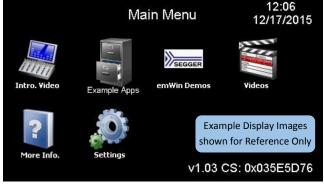
- Future Designs Support Page http://www.teamfdi.com/support/
- μEZ Source Code, user's manuals, and quickstart guides https://sourceforge.net/projects/uez/
- Segger Mini-JTAG Debugger http://www.segger.com/cms/jlink-software.html
- Rowley Crossworks IDE download for 30-day evaluation http://www.rowley.co.uk/arm/index.htm

5. Functional Description

- LPC4088 120 MHz Cortex-M4 based Microprocessor
- SDRAM 8MB, optional up to 64MB
- SPIFI Serial Flash 16MB
- Internal on-chip 4KB EEPROM
- RTC Real Time Clock with Super Capacitor backup
- Temperature Sensor
- 3-axis Accelerometer
- Speaker
- Micro SD Card Socket for up to 64GB SDHC storage, microSD card included with kit only
- Mini JTAG
- PMOD Type 2A connector
- Power-on Reset Generator power-on reset supervisor and voltage monitor (SW1)
- Expansion Connector for customer specific applications

6. Startup procedure


The µEZ GUI kit comes with a pre-installed 4GB micro SD card that contains files required for the demo applications and slide show to run. It also contains users' manuals, schematics, and documentation for the product.



Power is supplied via the USB cable provided in the kit. To power on the unit from the USB power supply or other USB source, connect the USB cable to P1, the mini AB USB connector.

Depending on the version you are using, one of the following screens should appear once power has been applied to the kit:

43WQE Screen

43WQH and 43WQN Screen

The unit is now ready for software demonstrations and user operation.

By connecting the USB A to mini B cable to P1, the μ EZ GUI will also appear as a USB Flash Drive to the PC, allowing the user to read/write files directly to the Micro SD card.

7. Demonstration Software Main Menu

Note: The Demonstration Software is subject to change at any time.

The following software demonstrations are available from the Main Menu:

a) Example Apps

Selecting the Example Apps icon will load the Example Applications Screen with the following options:

Main Menu – this will return the μEZ GUI to the Main Menu of the demonstration software. The μEZ GUI will load the application and reboot.

- Bowling This demonstration is an example of a bowling alley user interface.
- **Project Maker** This is a demonstration example application developed using the Project Maker utility from Future Designs. Currently, this demonstration is a Temperature and Time/Date application.

Temperature

Select the temperature icon to display external and internal temperatures. The μ EZ GUI will display an external temperature at any time. However, it is only valid when an external temperature sensor has been connected to the μ EZ GUI hardware. <u>Digilent Inc.</u> sells a temperature sensor, <u>part number 410-287P</u>, that could be used for this purpose. The internal temperature is read from the <u>LM75 temperature sensor</u>. There are no user changeable parameters. To return to the main menu, select 'Back'.

• Time and Date

Select this feature to display the current time and date from the internal real time clock (RTC).

- To change the time or date:
 - 1. Select the field you want to change.
 - 2. Enter the numeric value.
 - 3. Select 'Enter'.
 - 4. Select 'Cancel' if you do not want to change the field. Or, wait until the entry screen times out and returns to the Time Date Settings screen.
- o If invalid values are entered, the software will default to the maximum valid value for the field.
- Once set, an on-board super capacitor will back-up the time and date for several days (typically) while the unit is powered off.
- o Select 'Back' to return to the Settings Menu.
- Temp. Graph This is a demonstration example of a graphing application recording temperature and humidity.

b) Slideshow

Selecting the slideshow icon will use the microSD card to read slideshow configuration. This allows the user to select between several slideshow options such as " μ EZ GUI Family Overview", "Demonstration Pictures", " μ EZ Software Overview", "Modular Development Kit", etc. depending on the configuration of the SD Card.

Select the slideshow you would like to view by touching the menu entry for it on the touch screen. The slide show will auto-play by default.

By touching the screen during the slideshow, the menu overlay will appear:

- Select the "||" button to pause the slideshow.
- Select the play button to begin the automated slide show.
- The user can move to the next slide by touching the ">" or "<" menu buttons (during auto-play or manual sequencing)
- Select the stop (square block) to return to the slideshow menu.
- Select 'Back' from the slideshow menu to return to the previous menu.

c) Settings

Brightness

Selecting the brightness icon shows a menu with color bars and a brightness adjustment slider.

- Move the slider up or down to adjust the brightness.
- Select 'Back' to return to the Settings Menu.

Time/Date

Use this application to set the time and date from the internal real time clock (RTC). This is the time and date displayed in the Settings menu upper right corner.

- To change the time or date simply select the field you want to change:
 - 1. Enter the numeric value
 - 2. Select 'Enter'
 - 3. Select 'Cancel' if you do not want to change the field, or simply wait until the entry screen times out and returns to the Time Date Settings screen
- If invalid values are entered, the software will default to the maximum valid value for the field
- Once set an on-board super capacitor will back-up the time and date for several days (typically) while the unit is powered off.
- Select 'Back' to return to the Settings Menu.

Vol. Contr.

This feature displays the 'Master', 'Speaker', and 'Headphones' volume sliders, along with 'Mute' checkboxes. 'Master' controls the volume of the unit as a whole, 'Speaker' controls the volume coming from the onboard speaker, and 'Headphones' controls the audio being output if your board has a headphone jack installed.

8. Setting up a Slideshow

We have created a document and included tools for creating your own slideshows for μ EZ GUI units. Production module units require 24-bit uncompressed Targa (.TGA) format for all images. Development kit units require bitmap (.BMP) format for all slideshow images.

http://www.teamfdi.com/wp-content/uploads/Slideshow-Creation-Guide.pdf

This guide also covers making speaker notes that can play alongside your slides.

9. Setting up a Video

Suggested procedures on creating videos for playback using the μEZ video player provided in μEZ v2.05 (and later) on supported μEZ GUI hardware, is available in the FDI Video Creation Guide (link below). This guide also suggests basic procedures for downloading videos from YouTube.

This guide assumes that a source video is available in AVI uncompressed format with a resolution of 480×272 or greater.

Video Creation Guide:

http://www.teamfdi.com/support/uez/Video/uEZ%20Auto%20Video%20Conversion%20Guide.pdf

10. μEZ Doxygen online HTML documentation

μΕΖ has built-in comment documentation that follows the Doxygen comment standard. This standard writes code comments and annotations in a certain manner so that it is compiled along with source code into HTML documentation.

FDI provides pre-compiled HTML documentation at this link: http://www.teamfdi.com/uez/docs/

In the μEZ source code, "uEZ/uEZDoxyfile" is the main project file for the Doxygen generator. When Doxygen is recompiled, the new Doxygen files will be found here: $uEZ\Docs\Doxygen_Documentation.html$

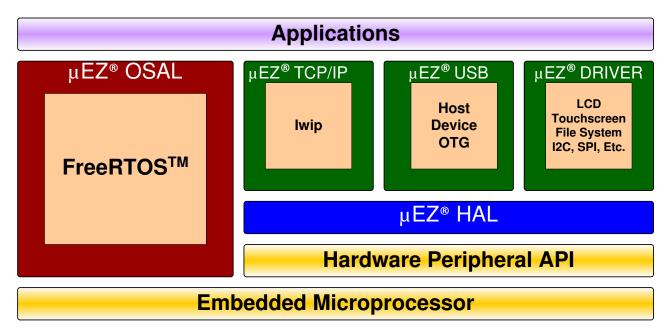
FDI updates the documentation periodically. We recommend reviewing your device for updates to the documentation as you learn a new μEZ^{\otimes} release or drivers are added to the system.

For more information, see the Doxygen website: http://www.doxygen.org/.

11. μEZ Project Maker

FDI has provided a project maker to help create new projects for μEZ GUI hardware. It is available for download at http://sourceforge.net/projects/uez/.

To create a new project, download the application, run the executable file, and follow the onscreen instructions. It will create a demo project using an emWin example GUI that will provide basic peripheral functionality. The project maker greatly speeds up the development process for new applications. Example projects are ready to be compiled and programmed onto μ EZ GUI hardware using the included J-Link debugger, with no extra project configuration necessary.


12. Software

μΕΖ[®] takes its name from the Muses of Greek mythology. A Muse was a goddess who inspired the creation process for the arts and sciences. Like its ancient Greek namesake, the **μΕΖ**[®] platform inspires rapid development by supplying customers with an extensive library of open source software, drivers, and processor support - all under a common framework. **μΕΖ**[®] development works on the premise of "design once, reuse many times". This provides an open source standard for embedded developers to build upon and support. **μΕΖ**[®] allows companies to focus on innovation and on their own value-added applications while minimizing development time and maximizing software reuse.

The diagram below shows a typical embedded application stack. μEZ^{\otimes} has three primary categories of components that help simplify embedded application development:

- 1. Operating System Abstraction Layer (μΕΖ® OSAL)
- 2. Sub-system drivers (μΕΖ® TCP/IP, μΕΖ® USB, μΕΖ® Driver)
- 3. Hardware Abstraction Layer (µEZ® HAL)

The selection of an RTOS can be one of the most daunting aspects of an embedded system development. With μEZ^{\otimes} the primary features of common multi-tasking operating systems are abstracted, thus easing the transition to an open source or low-cost RTOS. The μEZ^{\otimes} OSAL provides applications access to the following features in an OS-independent fashion:

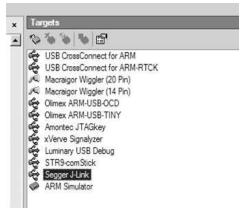
- Pre-emptive multitasking
- Stack overflow detection
- Unlimited number of tasks

- Queues
- Semaphores (binary, counting, mutex)

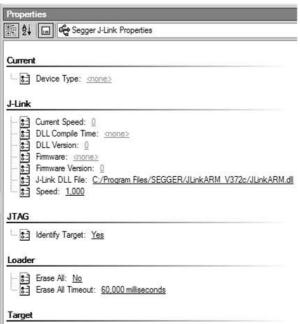
The **μEZ**® sub-system drivers utilize the OSAL functions to provide protected access to the processor peripherals. The sub-system driver API functions are typically protocol layer interfaces (TCP/IP, USB, etc) designed as high-level access routines such as open, close, read, write, etc. where possible.

μΕΖ[®] is ideally suited for Embedded Systems with standard features such as:

- Processor and Platform BSPs (Board Support Packages)
- Real Time Operating System (RTOS)
- Memory Management
- NAND/NOR Flash
- SDRAM and DDR Memory

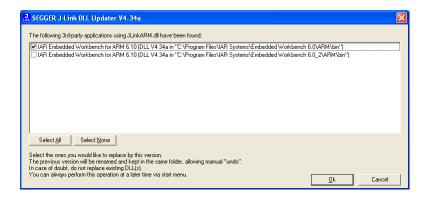

- TCP/IP stack
- USB Device/Host Libraries
- Mass Storage Devices
- LCD Displays with Touch Screen
- Input / Output Devices

13. Configuring Rowley CrossWorks CrossStudio for ARM® for J-Link Flashing


- 1) See the document "uEZ® Software Quickstart Guide" for details on how to download the μEZ® source code and setup the Rowley CrossWorks compiler. (http://www.teamfdi.com/development-tools-kits/uez.php) software quick start guide
- 2) Plug in the J-Link device into the PC and install any drivers as directed. The Segger J-Link drivers can be found at http://www.segger.com/cms/jlink-software.html with additional information at http://www.segger.com/cms/development-tools.html.
- 3) Plug in the J-Link's JTAG connector to the μEZ GUI board at J3 with the JTAG adapter.

4) Select **Target** menu and choose **Targets**. The following list will appear to the right.

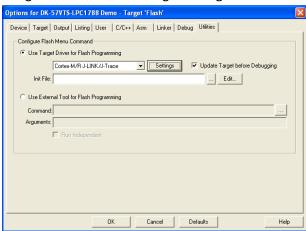
5) Right click on "Segger J-Link" and select Properties

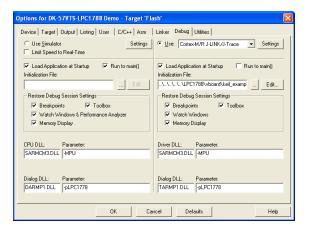


- 6) If programming a blank LPC4088 part, select a Speed of 100. If the part has already been programmed, select a Speed of 1000.
- 7) Go back to menu Target and select "Connect Segger J-Link"
- 8) Compile the application and press F5 to download and start debugging.

14. Configuring IAR EWARM v6.30 for J-Link Flashing

The IAR tools do not require any special configuration for configuring the J-Link tools. To update IAR's J-Link dll you just need to run Segger's J-Link DLL Updated and select the IAR install you wish to update and click Ok.




15. Configuring Keil uVison 4 for J-Link Flashing

To configure Keil, use the following steps.

- 1. Click Flash from the Menu Bar and select Configure Flash Tools...
- 2. Click the Utilities Tab.
- 3. In the dropdown box for Use Target Driver for Flash Programming select the CORTEX-M/R J-LINK/J-Trace.

4. Click the Debug tab and select the same device for Use.

16. Functional Test Software

The Functional Test Software tests all the basic features of the uEZGUI-4088-43WQN KIT as follows.

Functional Test is a step by step test of the following parameters:

- Accelerometer Tests the presence of the accelerometer.
- EEPROM test The EEPROM is tested for communication and integrity.
- LCD color test Red, Green, and Blue are displayed in smooth bands to verify the LCD lines
- MicroSD Looks for a Micro SD Card with the file "SLIDES/SLIDES.TXT"
- NOR Flash Memory test basic test is performed to confirm read/write access.
- RTC Sets the time and confirms the clock is running.
- SDRAM size test Memory is sized and a basic test is performed to confirm read/write access.
- Speaker test Tones are played and the User is asked to verify that they are heard.
- Temperature the on board LM75B sensor is tested to be in a range of 20-30 C.

A final report of PASS or FAIL is displayed along with a list of any Skipped and Failed items.

17. Board Layout

The following figure illustrates the layout of the various components of the UEZGUI-4088-43WQN kit. They are for reference only and are subject to change.

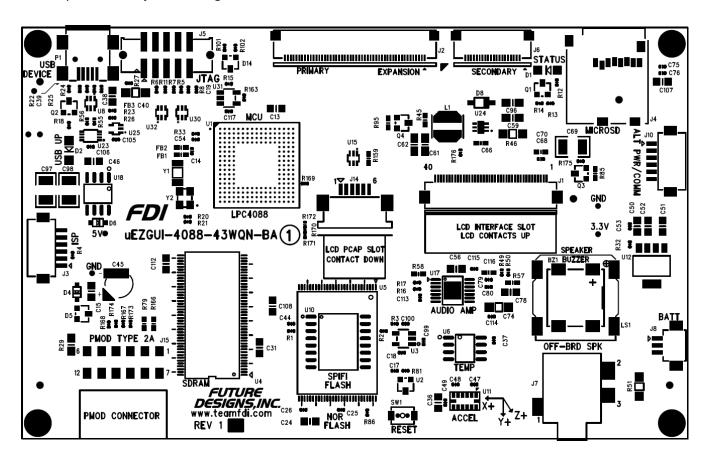
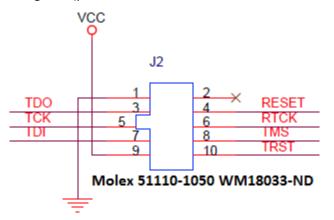


Figure 2 - UEZGUI-4088-43WQN-BA Component View

18. I/O Connector Descriptions

J5 - JTAG Connector

The UEZGUI-4088-43WQN-BA uses a reduced size JTAG connector based on a 2mm Header. This smaller connector provides 100% of the functionality of the standard 20-pin JTAG connector, but utilizes 70% less board space. The connector is a standard part available from most major vendors.


Pin Number	Description	Pin Number	Description
1	GND	6	RTCK
2	5.0V	7	TDI
3	TDO	8	TMS
4	RESETn	9	3.3V
5	тск	10	TRSTn

The FDI Mini-JTAG Adapter is available here:

http://www.digikey.com/product-detail/en/JLINK-ARM-AD/622-1039-ND/2631978

For users that may have existing JTAG debuggers, an adapter may be fabricated using the following wiring diagram: (part numbers for the connectors are included from both the manufacturer and Digi-Key

FDI Mini-JTAG Connector RTCK disconnected on Cortex-M by default

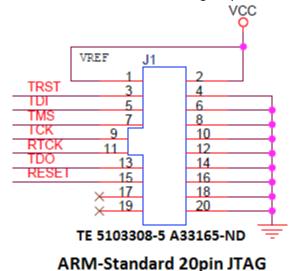


Figure 3 – Mini JTAG Adapter Schematic

J12 - Tag Connect

The UEZGUI-4088-WQN-BA also includes the ability to JTAG and program using the Tag-Connect TC2050-ARM2010 ARM 20-pin to TC2050 Adapter.

- Adapter: http://www.tag-connect.com/TC2050-ARM2010
- Cable with legs: http://www.tag-connect.com/TC2050-IDC
- Cable with no legs: http://www.tag-connect.com/TC2050-IDC-NL
- Holding clip for no-legs cable version: http://www.tag-connect.com/TC2050-CLIP

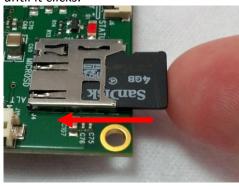
Figure 4 – Tag-Connect JTAG adapter, cables, and pinout for 10-pin TC2050

J4 - MicroSD Socket

When connected to the USB Host port on a PC, the UEZGUI-4088-43WQN-BA will appear as a USB Flash Drive to the PC, allowing the user to read and write files directly to the MicroSD card. The unit uses a MicroSD Socket for flexible mass storage capability. μEZ^{TM} supports MicroSDHC and SDHC Cards up to 64GB. This interface uses 4-wire SD mode.

Pin Number	Description
1	Micro SD DAT2
2	Micro SD DAT3
3	Micro SD CMD
4	3.3V
5	Micro SD SCLK
6	Ground
7	Micro SD DAT0
8	Micro SD DAT1

WARNING: The microSD card must only be removed using the spring loaded "push-pull" mechanism on the microSD socket. Improper forceful removal of the microSD card will result in permanent damage to the socket that is <u>not covered under warranty</u>. To insert the card, just push it into the socket until a "click" sound is heard.


Start with the microSD card in this position relative to the microSD slot with the text and "lip" facing up.

Next gently insert the card partially into the socket.

Use your figure to gently push the card into the socket until it clicks.

At this point the microSD card is fully inserted. It should not fall out, even if the unit is shaken vigorously.

To remove the microSD card, press the card back into the socket until another "click" sound is heard, then release pressure on the card. At this point, the card should be partially ejected from the socket. Finally grab the card and gently pull to remove it. See the following pictures for proper micro-SD removal:

To remove the microSD card, gently push it into the socket again until it "clicks", and then release your figure.


At this point, the microSD card should partially stick out of the socket.

Carefully grab the edges or sides of the microSD card and gently pull it out.

At this point the microSD card is fully removed from the socket.

J3 - ISP Connector

The UEZGUI-4088-43WQN-BA includes an ISP programming header. This header is designed to be utilized with the USB-ICP-LPC2K programmer from FDI. However, the connector on the UEZGUI-4088-43WQN-BA is not directly compatible with the one used on the USB-ICP. This connector is a 1.25mm Hirose male, shrouded connector. The Hirose Part Number is: DF13A-6P-1.25H(20) (Digikey PN: H3371-ND). The pin out shown below is a direct, 1:1 connection to the USB-ICP-LPC2K programmer available from Future Designs, Digi-Key or Mouser.

Pin Number	Description	
1	3.3V	
2	Reset Input	
3	ISP Entry	
4	Ground	
5	RXD	
6	TXD	

J10 - Alternate Power and communication

The UEZGUI-4088-43WQN-BA includes an alternate power and communication header. This header provides access to UART 3, as well as a 5V power input. This connector is a 1.25mm Hirose male, shrouded connector. The Hirose Part Number is: DF13A-6P-1.25H(20) (Digikey PN: H3371-ND).

Pin Number	Description	
1	P0.0_TXD3	
2	5V Input	
3	5V Input	
4	Ground	
5	Ground	
6	P0.1_RXD3	

J15 - PMOD Type 2A Connector

The UEZGUI-4088-43WQN-BA includes a PMOD Type 2A (SPI) connection to an expansion board.

Pin Number	Description	Pin Number	Description
1	SPI Chip Select	7	Interrupt Request
2	SPI MOSI	8	Reset
3	SPI MISO	9	Optional I2C SCL
4	SPI Clock	10	Optional I2C SDA
5	Ground	11	Ground
6	3.3V	12	3.3V

P1 – USB mini-AB port and USB Power Input 5VDC

The UEZGUI-4088-43WQN-BA has a mini-AB USB connector for host or device mode. By using a USB OTG adapter (with a mini-A plug) it will short the ID pin 4 to ground. This can be used for host mode detection in the application. The UEZGUI-4088-43WQN -BA is normally powered via P1 with the included 5V USB Wall Supply or via a standard 500mA powered USB port. This power supply is only included in the development kit and is not included with the UEZGUI-4088-43WQN -BA.

Pin Number	Description
1	5V
2	D-
3	D+
4	ID
5	Ground

J2 & J6 - Expansion Connectors

The UEZGUI-4088-43WQN-BA includes two expansion connectors that provide a wide variety of capabilities for user expansion, ranging from 10/100 Ethernet to USB Host, etc. **Please Note:** When using I/O signals on the μ EZ GUI Expansion Connectors (J2 & J6) to connect via the customers Expansion Board to external connectors or signals, it is the customer's responsibility to provide adequate ESD protection and filtering to prevent damage to any pins that are not directly protected on the μ EZ GUI.

The tables below provide the pinout and signal names available on these connectors:

J2 Signal Details

Pin	Pin Name	Pin Description	
1	Ground (GND)		Power
		P0[11] - General purpose digital Input/Output pin.	I/O
	P0.11_RXD2_SCL2_MAT3.1 ⁽¹⁾	RXD2 - Receiver input for UART2.	I
2	Unavailable	SCL2 - I2C2 clock Input/Output (this is not an open-drain pin)	1/0
		MAT3[1] -Match output for Timer3, channel 1.	0
		P0[10] - General purpose digital input/output pin.	1/0
	P0.10_TXD2_SDA2_MAT3	SDA2 - I2C2 data input/output (this is not an open-drain pin).	1/0
3	(Not usable in default configuration!)	MAT3[0] - Match output for Timer3, channel 0.	0
		TXD2 -Transmitter output for UART2.	0
4	P2.21	P2[21] - General purpose digital input/output pin.	1/0
		P0[21] - General purpose digital input/output pin.	1/0
		U1_RI - Ring Indicator input for UART 1	1
5	P0.21	RD1 - CAN1 receive input	1
		U4 SCLK - UART 4 Clock/output in synchronous mode	1/0
		U4 OE - UART 4 Output Enable for RS485/EIA-485	0
		P4[21] - General purpose digital input/output pin.	1/0
6	P4.21_SCL2_SSEL1	SSEL1 - Slave Select for SSP1.	1/0
		SCL2 - I2C2 clock input/output (this is not an open-drain pin)	1/0
		P4[20] - General purpose digital input/output pin.	1/0
7	P4.20_SDA2_SCK1	SCK1 - Serial Clock for SSP1.	1/0
,	14.20_3BA2_3CK1	SDA2 - I2C2 data input/output (this is not an open-drain pin).	1/0
		P4[23] - General purpose digital input/output pin.	1/0
8	P4.23_RXD2_MOSI1	RXD2 - Receiver input for UART2.	1,0
°	F4.23_IND2_IND3I1	MOSI1 - Master Out Slave In for SSP1	0
		P4[22] - General purpose digital input/output pin.	1/0
9	DA 22 TVD2 MISO1	TXD2 -Transmitter output for UART2.	0
9	P4.22_TXD2_MISO1	MISO1 - Master In Slave Out for SSP1.	1/0
10	Ground (GND)	WIGOT - IVIASCEI III SIAVE OUL IOI SSF1.	Power
10	Ground (GND)	DO[20] Conord purpose digital lange / Output ain	
11	USB1_DM	P0[30] - General purpose digital Input/Output pin.	I/O I/O
11		USB_D- 1 - USB port 1 bidirectional D- line.	-
12	USB1_DP	P4[29] - General purpose digital Input/Output pin.	1/0
		USB_D+1 - USB port 1 bidirectional D+ line.	1/0
13	USB1H_PWRD	P4[26] -General purpose digital Input/Output pin.	1/0
1.1	LICEALL OVC	BLSO - LOW active Byte Lane select signal 0.	0
14	USB1H_OVC	P4[24] - General purpose digital Input/Output pin.	1/0
4.5	Ugazii aani-	P0[19] - General purpose digital Input/Output pin.	1/0
15	USB1H_PPWR	CAP1[1] - Capture input for Timer 1, channel 1	1
		USB_PPWR1 - Port Power enable signal for USB port 1.	0
		1/0	I/O
		12STX_SDA - 12S transmit data. It is driven by the transmitter and read by the receiver.	1/0
16	P0.9_I2STX_SDA_MOSI1_MAT2.3	Corresponds to the signal SD in the I2S-bus specification.	
		MAT2[3] - Match output for Timer 2, channel 3	0
		MOSI1 - Master Out Slave In for SSP1.	1/0
		P0[8] -General purpose digital Input/Output pin.	I/O
. —		12STX_WS - 12S Transmit word select. It is driven by the master and received by the slave.	I/O
17	P0.8_I2STX_WS_MISO1_MAT 2.2	Corresponds to the signal WS in the I2S-bus specification.	•
		MAT2[2] - Match output for Timer 2, channel 2	0
		MISO1 - Master In Slave Out for SSP1.	1/0
		P0[7] – General purpose digital Input/Output pin.	I/O
18	P0.7_I2STX_CLK_SCK1_MAT 2.1	I2STX_CLK - I2S transmit clock. It is driven by the master and received by the slave. Corresponds	I/O
		to the signal SCK in the I2S-bus specification.	*

Pin	Din Name	Dia Description	
	Pin Name	Pin Description	
		MAT2[1] - Match output for Timer 2, channel 1	0
		SCK1 - Serial Clock for SSP1.	I/O
		P0[6] - General purpose digital Input/Output pin	1/0
		I2SRX_SDA - I2S Receive data. It is driven by the transmitter and read by the receiver.	1/0
19	P0.6_I2SRX_SDA_SSEL1_MAT2.0	Corresponds to the signal SD in the I2S-bus specification.	
		SSEL1 - Slave Select for SSP1.	1/0
		MAT2[0] - Match output for Timer 2, channel 0	0
		P0[5] - General purpose digital Input/Output pin.	I/O
20	DO 5 125DV IMS TD2 54 D2 4	I2SRX_WS - I2S Receive word select. It is driven by the master and received by the slave.	1/0
20	P0.5_I2SRX_WS_TD2_CAP2.1	Corresponds to the signal WS in the I2S-bus specification.	
		TD2 - CAN2 transmitter output.	0
		CAP2[1] - Capture input for Timer 2, channel 1	1 10
		P0[4] -General purpose digital Input/Output pin.	I/O
24	DO 4 12CDV CLV DD2 CAD2 0	I2SRX_CLK - I2S Receive clock. It is driven by the master and received by the slave. Corresponds	1/0
21	P0.4_I2SRX_CLK_RD2_CAP2.0	to the signal SCK in the I®S-bus specification.	
		RD2 - CAN2 receiver input	1
22	Constal (CND)	CAP2[0] - Capture input for Timer 2, channel 0	D
22	Ground (GND)	5 to red work in a LATOW or this rise works the decision of the relative	Power
22	DECET IN	External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to	
23	RESET_INn	take on their default states, and processor execution to begin at address 0. TTL with hysteresis,	'
		5 V tolerant	
24	RESET_OUTn	RSTOUT - This is a 3.3 V pin. LOW on this pin indicates LPC4088 being in Reset state	0
		P0[26] General purpose digital Input/Output pin.	1
25	P0.26 AD03 AOUT RXD3 (1)	AD0[3] - A/D converter 0, input 3.	0
		AOUT - D/A converter output.	1
		RXD3 - Receiver input for UART3	1/0
		P1[31] – General purpose digital Input/Output pin.	1/0
26	P1.31_SCK1_AD0.5	SCK1 - Serial Clock for SSP1.	I/O
		AD0[5] - A/D converter 0, input 5	I
27	P1.17_ENET_MDIO	P1[17] - General purpose digital Input/Output pin.	1/0
		ENET_MDIO - Ethernet MIIM data input and Output	1/0
28	P1.16_ENET_MDC	P1[16] - General purpose digital Input/Output pin.	I/O
		ENET_MDC - Ethernet MIIM clock	0
29	Ground (GND)		Power
		P1[15] – General purpose digital Input/Output pin.	I/O
30	P1.15_ENET_REFCLK	ENET_REF_CLK/ENET_RX_CLK – Ethernet Reference Clock (RMII interface)/ Ethernet Receive	1
		Clock (MII interface)	
31	P1.14_ENET_RX_ER	P1[14] –General purpose digital Input/Output pin.	1/0
		ENET_RX_ER - Ethernet receive error (RMII/MII interface)	1
32	3p3 volts	3.3 volts	Power
33	P1.10_ENET_RXD1	P1[10] – General purpose digital Input/Output pin.	1/0
		ENET_RXD1 - Ethernet receive data 1 (RMII/MII interface)	I
34	P1.9 ENET RXD0	P1[9] - General purpose digital Input/Output pin.	I/O
<u> </u>	. 1.5_1.121_1.000	ENET_RXD0 - Ethernet receive data 0 (RMII/MII interface)	I
		P1[8] - General purpose digital Input/Output pin.	1/0
35	P1.8_ENET_CRSDV	ENET_CRS_DV/ENET_CRS – Ethernet Carrier Sense/Data Valid (RMII interface)/ Ethernet Carrier	1
		Sense (MII interface)	
36	P1.4_ENET_TXEN	P1[4] - General purpose digital Input/Output pin.	I/O
		ENET_TX_EN - Ethernet transmit data enable (RMII/MII interface)	0
	P1.1_ENET_TXD1	P1[1] - General purpose digital Input/Output pin.	1/0
37			
37	TI.I_ENET_TABI	ENET_TXD1 - Ethernet transmit data 1 (RMII/MII interface)	0
37	P1.0_ENET_TXD0	ENET_TXD1 - Ethernet transmit data 1 (RMII/MII interface) P1[0] - General purpose Digital Input/Output pin. ENET_TXD0 - Ethernet transmit data 0 (RMII/MII interface)	0 I/0

Pin	Pin Name	Pin Description	
39	Ground (GND)		
40	P2.10_EINTO_NMI	I/O - P2[10] - General purpose digital Input/Output pin. Note: LOW on this pin while RESET is LOW forces on-chip boot loader to take over control of the part after a reset.	
41	PO.3 RXDO	P0[3] - General purpose digital Input/Output pin.	1/0
41	F0.3_KAD0	RXDO - Receiver input for UARTO	1
42	PO.2 TXDO	P0[2] - General purpose digital Input/Output pin.	
42	P0.2_1AD0	TXD0 - Transmitter output for UART0	
43	USBD_DP	USB_D+2 - USB port 2 bidirectional D+ line	
44	USBD_DM	USB_D-2 - USB port 2 bidirectional D- line	
		USB_PWRD2 - Power Status for USB port 2.	1
45	USBD_VBUS	VBUS - Monitors the presence of USB bus power. Note: This signal must be HIGH for USB reset to occur. I - AD0[4] - A/D converter 0, input 4	
46	5volts (5VO)	5.0 Volts Po	
47	5volts (5VO)	5.0 Volts Po	
48	5volts (5VO)	5.0 Volts Powe	
49	3p3 volts (3V3)	3.3 Volts Power	
50	3p3 volts (3V3)	3.3 Volts Power	

On the UEZGUI-4088-43WQN, J2-6 through J2-9 can be selectable for either the group of Port 0 pins, or Port 4 pins shown below. By default, the SPIFI Flash is loaded along with RN2. This allows the use of P4.20 – P4.23 on the expansion connector. The following 0 ohm resistor networks are used to control which port pins are used:

Pin on Expansion board	Pin on NOR Flash/SPIFI Flash	RN1	RN2
P4.20 - P4.23	P0.15 - P0.18	No Load	Loaded
P0.15 - P0.18	P4.20 – P4.23	Loaded	No Load

J6 Signal Details

Pin	Pin Name	Pin Description	
1	Ground (GND)		Power
	P5.4_TXD0_OE_MAT3.3_TXD4	P5[4] – General Purpose digital Input/Output	I/O
2		TXD0_OE - UART0 Transmitter Output Enable	0
2		MAT3[3] – Match output for Timer 3, channel 3	0
		TXD4 – UART4 Transmit data	0
	P5.3_RXD4_SCL0+	P5[3] – General Purpose digital Input/Output	I/O
3		RXD4- UART4 receive data	_
		SCL0+ - I2C Clock for FM+ Operation	I/O
	P5.2_MAT3.2_SDA0+	P5[3] – General Purpose digital Input/Output	I/O
4		MAT3[2] – Match output for Timer 3, channel 2	0
		SDA0+ - I2C Data for FM+ Operation	I/O
5	Signal needed for high speed SD card so unavailable		
6	Signal needed for high speed SD card so unavailable		
7	Signal needed for high speed SD card so unavailable		
8	Signal needed for high speed SD card so unavailable		
	P1.5_MCIPWR_PWM0.3	P1[5] – General Purpose digital Input/Output	1/0
9		MCIPWR – Power Supply Enable for external SD/MMC Power Supply	0
		PWM0[3]-Pulse Width Modulator 0, output 3	0
	P1.3_MCICMD-PWM0.2	P1[3] – General Purpose digital Input/Output	I/O
10		MCICMD – Command line for SD/MMC interface	I/O
		PWM0[2]-Pulse Width Modulator 0, output 2	0

Pin	Pin Name	Pin Description	
11	P0.1_TD1_RXD3_RXD0	P0[1] – General Purpose digital Input/Output	1/0
		TD1 – Can1 transmitter output	0
11		RXD3 – Receiver input for UART3	
		RXD0 – Alternate UART0 receive data	1
	PO.0_RD1_TXD3_TXD0	PO[0] – General Purpose digital Input/Output	1/0
12		RD1 – Can1 receive input	1
12		TXD3- Transmitter output for UART3	0
		TXD0 – alternate UART0 transmit data	0
13	5volts(5VO)	5.0 Volts	Power
14	Ground (GND)		
	P0.13_USB2_UPLED_AD0.7 ⁽¹⁾	P0[13] – General Purpose digital Input/Output	1/0
15		UPLED- USB port 2 Good Link indicator	0
		AD0[7]- A/D converter0, input 7	1
16	P0.12_USBPPWR2_AD0.6 ⁽¹⁾	P0[12] – General Purpose digital Input/Output	1/0
10		AD0[6]- A/D converter0, input 6	1
	P0.25_AD0.2_TXD3 ⁽¹⁾	P0[25] – General Purpose digital Input/Output	1/0
17		AD0[2]- A/D converter0, input 2	1
		TXD3 – Transmitter output for UART3	0
	TP_RL_Y2_P0.24_AD0.1 (1)	TP_RL_Y2 – Touch panel interface right side horizontal [Not Typically Supported]	
18		P0[24] - General Purpose digital Input/Output	1/0
		AD0[1] – A/D converter0, input 1	1
	TP_RL_X1_P0.23_AD0.0 ⁽¹⁾	TP_RL_X1 – Touch Panel left side horizontal [Not Typically Supported]	
19		P0[23] - General Purpose digital Input/Output	1/0
		AD0[0] – A/D converter0, input 0	1
20	Ground (GND)		Power

Notes: (1) Signal may be utilized by on-board function. Consult schematic for connectivity and actual usage/availability

J2 & J6 - Expansion Connector Cable Details

The maximum length for the expansion connector cables is as follows: General Purpose IO, TTL, Serial, etc = 6" recommended maximum, 8" absolute maximum Ethernet, high-speed IO, etc = 3" recommended maximum, 4" absolute maximum

The following table provides example part numbers for the expansion cables:

Description	Mfg	Mfg PN	Digi-Key Pn
3" 20-pin 0.5mm	Molex	21020-0209	WM10226-ND
6" 20-pin 0.5mm	Molex	21020-0215	WM10218-ND
3" 50-pin 0.5mm	Molex	21020-7650	WM10231-ND
6" 50-pin 0.5mm	Molex	21020-0548	WM10223-ND

Note: These lengths are only recommendations. The actual lengths utilized depend on the expansion board circuitry, layouts and general environment of the application. Tests and validation should be conducted to ensure the functional operation and use of all third party expansion connectors.

19. Schematics

Please see the FDI website at http://www.teamfdi.com/support/touch-screen.php#uezgui-4088-43wqn for support documentation.

μEZGUI User's Manual

20. Temperature Range

UEZGUI-4088-43WQN-BA board w/o LCD: -40°C to +85°C

UEZGUI-4088-43WQN-BA with LCD: -10°C to +70°C

21. ESD Warning

The UEZGUI-4088-43WQN-BA kit is shipped in a protective anti-static package. The kit must not be subjected to high electrostatic potentials. Damage may occur to the boards that will not be covered under warranty. General practice for working with static sensitive devices should be followed when working with the kit.

22. Real Time Clock Backup Time

The μEZ GUI's Real Time Clock is backed up with a Seiko Super Capacitor to allow the time to be preserved when external power is removed. The calculated backup time is shown below.

Super Capacitor	Typical Voltage	Stop Voltage	Maximum Current	Typical Backup Time
XH414HG	3.0 V	2.0 V	1μΑ	18 hrs

23. Power Requirements

Power is supplied into the mini-USB connector (P1) via the USB cable and power supply provided in the kit. The power supply provides 5VDC output at 1.2A (min) and has input voltage range of 100-240VAC with standard U.S. 2-prong plug. The following typical power requirements were measured at room temperature with LPC1788 at 120MHz clock rate:

Voltage	μEZ Demo Screen	Observed Max	Maximum Allowed
5V	309 mA	330 mA	Up to 2A through power connectors

µEZ GUI USB Input Port Power Requirements:

- +5VDC ±5% is the input power range specification. However, since the 5VDC input has reverse diode protection, it may be necessary to provide a higher input voltage level of 5VDC input to ensure that the μEZ GUI 5VDC output level retains the specified tolerance. If the μEZ GUI input level drops to 4.75VDC, then the μEZ GUI +5VDC output level to either the Expansion Board or the USB Host connector may be lower than 4.75VDC since the worst case drop from input to output is typically 0.25V.
- For reference on the USB output port from the μEZGUI, the following are the specifications:
 - o USB High Power Specifications are 500mA maximum, and 4.75V to 5.25V standard.
 - USB Low Power Specifications are 100mA maximum, and 4.4V to 5.25V standard.

- The μEZ GUI is capable of providing a maximum of 300mA of 3.3V power for "external use" over the expansion connectors. If more than 300mA of 3.3V is needed for an expansion board;
 - Then the primary power input (i.e. 5V) should be located on the expansion board rather than on the UEZGUI.
 - The expansion board should be designed with a separate 3.3V voltage regulator.
 - Ensure the 3.3V voltage rails of the μΕΖ GUI & Expansion Board are not connected together.
 - \circ The μ EZ GUI should be powered using 5V from the expansion board over the 70 pin breakout, instead of powering the expansion board from the μ EZ GUI unit.
- The UEZGUI-4088-43WQN may also optionally be powered via the following connectors;
 - Alternate Power/Communication Connector, J10, with a maximum of 2A 5V input
 - Expansion Connector(s) J2 and/or J6 refer to the expansion connector section for details

24. Mechanical Details

The following illustrations show the mechanical details of the UEZGUI-4088-43WQN-BA PCB.

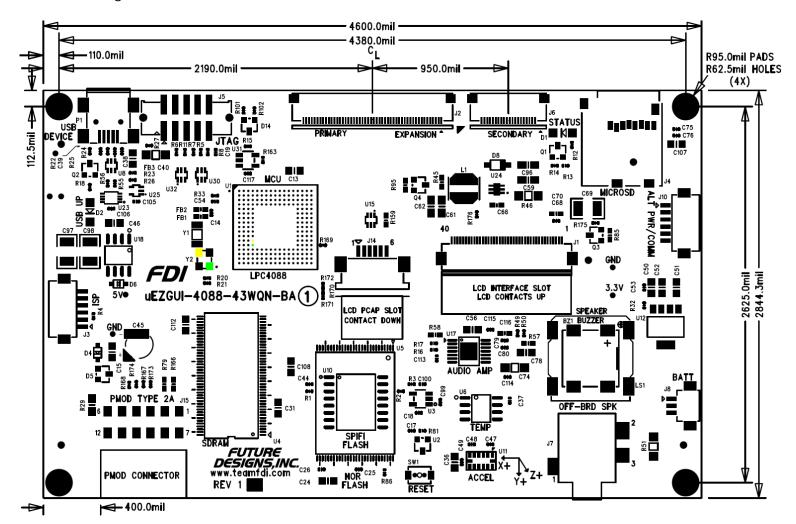


Figure 5 – Mechanical Dimensions (Component View)

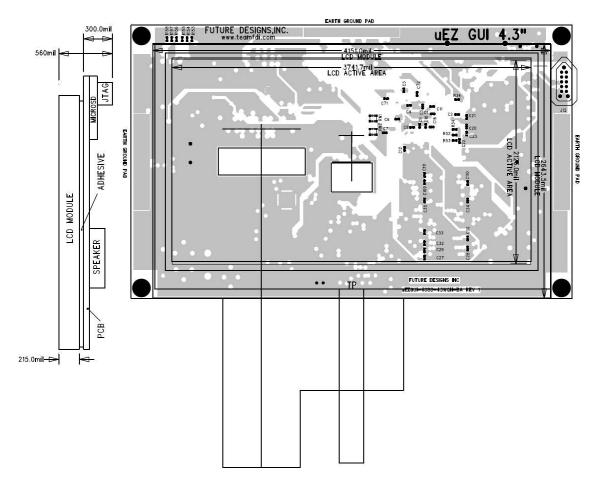


Figure 6 – Mechanical Dimensions (LCD Module View and Side View)