

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs INTEGRATED CIRCUIT

μ PG2159T6R

L, S-BAND SPDT SWITCH

DESCRIPTION

The μ PG2159T6R is a GaAs MMIC for L, S-band SPDT (<u>S</u>ingle <u>P</u>ole <u>D</u>ouble <u>T</u>hrow) switch which was developed for mobile phone and another L, S-band applications.

This device can operate 2 control switching by control voltage 1.8 to 3.3 V. This device can operate frequency from 0.05 GHz to 3.0 GHz, having the low insertion loss and high isolation.

This device is housed in a 6-pin plastic TSSON (<u>Thin Shrink Small Out-line Non-leaded</u>) (T6R) package. And this package is able to high-density surface mounting.

FFATURES

F	EATURES	
•	Switch control voltage	: $V_{cont(H)} = 1.8 \text{ to } 3.3 \text{ V } (2.7 \text{ V TYP.})$
		: $V_{cont(L)} = -0.2 \text{ to } 0.2 \text{ V } (0 \text{ V TYP.})$
•	Low insertion loss	: Lins1 = 0.20 dB TYP. @ f = 0.05 to 0.5 GHz, $V_{cont(H)} = 2.7 V$, $V_{cont(L)} = 0 V$
		: Lins2 = 0.21 dB TYP. @ f = 0.5 to 1.0 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
		: Lins3 = 0.23 dB TYP. @ f = 1.0 to 2.0 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
		: Lins4 = 0.25 dB TYP. @ f = 2.0 to 2.5 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
		: Lins5 = 0.27 dB TYP. @ f = 2.5 to 3.0 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
•	High isolation	: ISL1 = 27 dB TYP. @ f = 0.05 to 0.5 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
		: ISL2 = 27 dB TYP. @ f = 0.5 to 1.0 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
		: ISL3 = 27 dB TYP. @ f = 1.0 to 2.0 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
		: ISL4 = 27 dB TYP. @ f = 2.0 to 2.5 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
		: ISL5 = 27 dB TYP. @ f = 2.5 to 3.0 GHz, $V_{cont(H)}$ = 2.7 V, $V_{cont(L)}$ = 0 V
•	Handling power	: Pin (1 dB) = $+25.5$ dBm TYP. @ f = 0.5 to 3.0 GHz, V_{cont} (H) = 2.7 V, V_{cont} (L) = 0 V
		: Pin (0.1 dB) = $+22.0$ dBm TYP. @ f = 0.5 to 3.0 GHz, $V_{cont(H)} = 2.7$ V, $V_{cont(L)} = 0$ V
•	High-density surface mounting	: 6-pin plastic TSSON (T6R) package (1.0 \times 1.0 \times 0.37 mm)

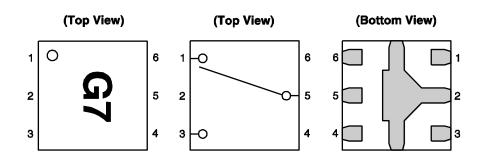
APPLICATIONS

- · L, S-band digital cellular or cordless telephone
- W-LAN and BluetoothTM

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPG2159T6R-E2	μPG2159T6R-E2-A	6-pin plastic TSSON (T6R) (Pb-Free)	G7	Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape Qtv 5 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.


Part number for sample order: µPG2159T6R-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PG10710EJ01V0DS (1st edition) Date Published June 2008 NS

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	OUTPUT1
2	GND
3	OUTPUT2
4	V _{cont} 2
5	INPUT
6	V _{cont} 1

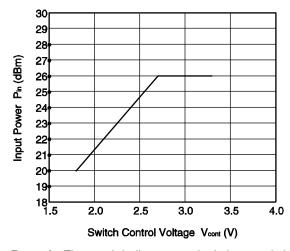
Remark Exposed pad : GND

TRUTH TABLE

V _{cont} 1	V _{cont} 2	INPUT-OUTPUT1	INPUT-OUTPUT2		
Low	High	OFF	ON		
High Low		ON	OFF		

ABSOLUTE MAXIMUM RATINGS (Ta = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Switch Control Voltage	Vcont	6.0 Note1	V
Input Power	Pin	+26.0 Note2, 4	dBm
Input Power	Pin	+8 + V _{cont} * 20/3 Note3, 4	dBm
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C


Notes 1. $|V_{cont}1 - V_{cont}2| \le 6.0 \text{ V}$

2. $2.7 \text{ V} \le |V_{cont}1 - V_{cont}2| \le 3.3 \text{ V}$

3. $1.8 \text{ V} \le |V_{cont}1 - V_{cont}2| \le 2.7 \text{ V}$

4. Please refer to following chart.

INPUT POWER vs. SWITCH CONTROL VOLTAGE

Remark The graph indicates nominal characteristics.

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Switch Control Voltage (H)	V _{cont (H)}	1.8	2.7	3.3	٧
Switch Control Voltage (L)	V _{cont (L)}	-0.2	0	+0.2	V

ELECTRICAL CHARACTERISTICS 1

(TA = +25°C, V_{cont} (H) = 2.7 V, V_{cont} (L) = 0 V, DC cut capacitors = 56 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 0.05 to 0.5 GHz Note1	-	0.20	0.35	dB
Insertion Loss 2	Lins2	f = 0.5 to 1.0 GHz	-	0.21	0.35	dB
Insertion Loss 3	Lins3	f = 1.0 to 2.0 GHz	-	0.23	0.40	dB
Insertion Loss 4	Lins4	f = 2.0 to 2.5 GHz	-	0.25	0.42	dB
Insertion Loss 5	Lins5	f = 2.5 to 3.0 GHz	_	0.27	0.45	dB
Isolation 1	ISL1	f = 0.05 to 0.5 GHz Note1	24	27	-	dB
Isolation 2	ISL2	f = 0.5 to 1.0 GHz	24	27	-	dB
Isolation 3	ISL3	f = 1.0 to 2.0 GHz	24	27	-	dB
Isolation 4	ISL4	f = 2.0 to 2.5 GHz	24	27	-	dB
Isolation 5	ISL5	f = 2.5 to 3.0 GHz	24	27	-	dB
Input Return Loss 1	RLin1	f = 0.05 to 0.5 GHz Note1	15	20	-	dB
Input Return Loss 2	RLin2	f = 0.5 to 3.0 GHz	15	20	-	dB
Output Return Loss 1	RLout1	f = 0.05 to 0.5 GHz Note1	15	20	-	dB
Output Return Loss 2	RLout2	f = 0.5 to 3.0 GHz	15	20	-	dB
0.1 dB Loss Compression Note2	Pin (0.1 dB)	f = 2.0 GHz/2.5 GHz	+20.0	+22.0	-	dBm
Input Power Note2		f = 0.5 to 3.0 GHz	_	+22.0	-	dBm
1 dB Loss Compression Input Power Note3	Pin (1 dB)	f = 0.5 to 3.0 GHz	_	+25.5	-	dBm
2nd Harmonics	2f ₀	f = 2.0 GHz/2.5 GHz, Pin = +10 dBm	65	77	-	dBc
3rd Harmonics	3fo	f = 2.0 GHz/2.5 GHz, Pin = +10 dBm	60	80	-	dBc
Input 3rd Order Intercept Point	IIРз	f = 0.5 to 3.0 GHz, 2 tone 5 MHz spacing	-	+49.0	=	dBm
Switch Control Current	Icont		-	0.2	1.0	μΑ
Switch Control Speed	tsw	50% CTL to 90/10%	_	20	200	ns

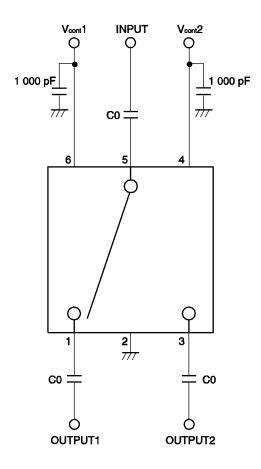
Notes 1. DC cut capacitors = 1 000 pF at f = 0.05 to 0.5 GHz

- 2. Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
- **3.** Pin (1 dB) is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

Caution This device is used it is necessary to use DC cut capacitors.

ELECTRICAL CHARACTERISTICS 2

(TA = +25°C, Vcont (H) = 1.8 V, Vcont (L) = 0 V, DC cut capacitors = 56 pF, unless otherwise specified)

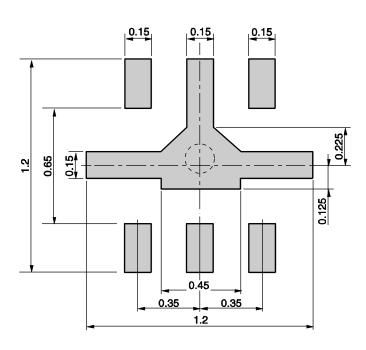

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 6	Lins6	f = 0.05 to 0.5 GHz Note1	-	0.21	0.36	dB
Insertion Loss 7	Lins7	f = 0.5 to 1.0 GHz	1	0.22	0.37	dB
Insertion Loss 8	Lins8	f = 1.0 to 2.0 GHz	I	0.24	0.41	dB
Insertion Loss 9	Lins9	f = 2.0 to 2.5 GHz	1	0.26	0.43	dB
Insertion Loss 10	Lins10	f = 2.5 to 3.0 GHz	I	0.28	0.46	dB
Isolation 6	ISL6	f = 0.05 to 0.5 GHz Note1	23	26	Ι	dB
Isolation 7	ISL7	f = 0.5 to 1.0 GHz	23	26	I	dB
Isolation 8	ISL8	f = 1.0 to 2.0 GHz	23	26	Ι	dB
Isolation 9	ISL9	f = 2.0 to 2.5 GHz	23	26	I	dB
Isolation 10	ISL10	f = 2.5 to 3.0 GHz	23	26	I	dB
Input Return Loss 3	RLin3	f = 0.05 to 0.5 GHz Note1	15	20	I	dB
Input Return Loss 4	RLin4	f = 0.5 to 3.0 GHz	15	20	Ι	dB
Output Return Loss 3	RLout3	f = 0.05 to 0.5 GHz Note1	15	20	I	dB
Output Return Loss 4	RLout4	f = 0.5 to 3.0 GHz	15	20	I	dB
0.1 dB Loss Compression Note2	Pin (0.1 dB)	f = 2.0 GHz/2.5 GHz	+12	+15.5	1	dBm
Input Power Note2		f = 0.5 to 3.0 GHz	ĺ	+15.5	I	dBm
1 dB Loss Compression Input Power Note3	Pin (1 dB)	f = 0.5 to 3.0 GHz	-	+19.5	-	dBm
Switch Control Current	Icont	RF None	Ī	0.2	1.0	μΑ
Switch Control Speed	tsw	50% CTL to 90/10% RF		20	200	ns

Notes 1. DC cut capacitors = 1 000 pF at f = 0.05 to 0.5 GHz

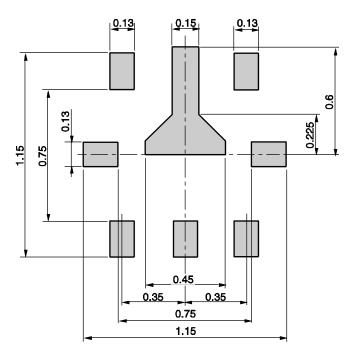
- 2. Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
- **3.** P_{in (1 dB)} is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

Caution This device is used it is necessary to use DC cut capacitors.

EVALUATION CIRCUIT


Remark C0 : 0.05 to 0.5 GHz 1 000 pF : 0.5 to 3.0 GHz 56 pF

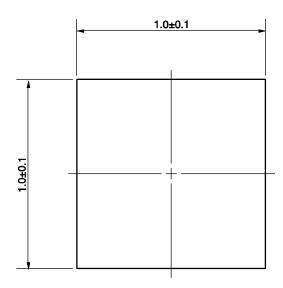
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.


MOUNTING PAD AND SOLDER MASK LAYOUT DIMENSIONS

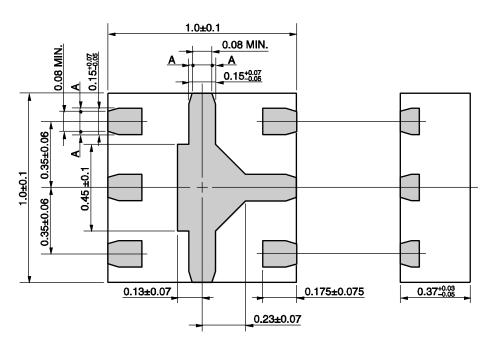
6-PIN PLASTIC TSSON (T6R) (UNIT: mm)

MOUNTING PAD

SOLDER MASK


Solder thickness : 0.08 mm

Remark The mounting pad and solder mask layouts in this document are for reference only.


PACKAGE DIMENSIONS

6-PIN PLASTIC TSSON (T6R) (UNIT: mm)

(Top View)

(Bottom View)

Remark A > 0

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.