

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Complementary Dual General Purpose Amplifier Transistor

PNP and NPN Surface Mount

- High Voltage and High Current: $V_{CEO} = 50 \text{ V}$, $I_C = 200 \text{ mA}$
- High h_{FE} : $h_{FE} = 200 \sim 400$
- Moisture Sensitivity Level: 1
- ESD Rating Human Body Model: 3A
 - Machine Model: C
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

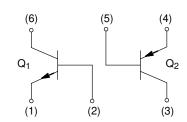
MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{(BR)CBO}	60	Vdc
Collector-Emitter Voltage	V _{(BR)CEO}	50	Vdc
Emitter-Base Voltage	V _{(BR)EBO}	7.0	Vdc
Collector Current – Continuous	I _C	200	mAdc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	P _D	187 (Note 1) 256 (Note 2) 1.5 (Note 1) 2.0 (Note 2)	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	670 (Note 1) 490 (Note 2)	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D	250 (Note 1) 385 (Note 2) 2.0 (Note 1) 3.0 (Note 2)	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	493 (Note 1) 325 (Note 2)	°C/W
Thermal Resistance, Junction-to-Lead	$R_{\theta JL}$	188 (Note 1) 208 (Note 2)	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. FR-4 @ Minimum Pad

- 2. FR-4 @ 1.0 x 1.0 inch Pad

ON Semiconductor®

www.onsemi.com

CASE 419B

MARKING DIAGRAM

3Z = Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

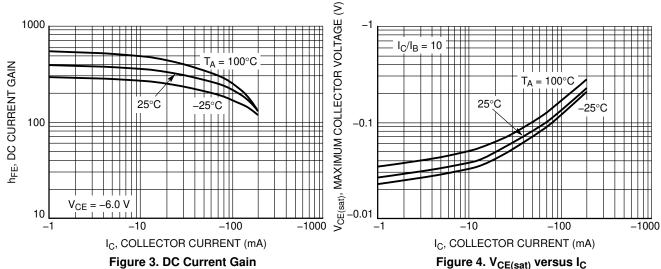
ORDERING INFORMATION

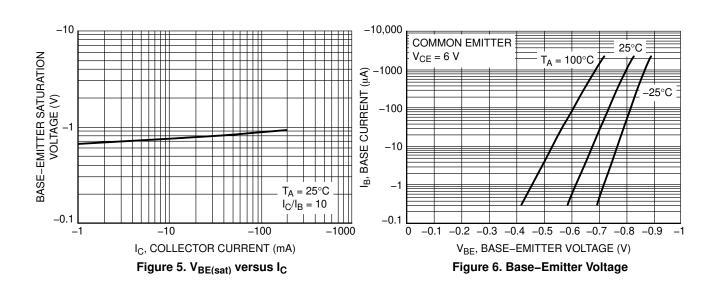
Device	Package	Shipping [†]
UMZ1NT1G	SC-88 (Pb-Free)	3000 / Tape & Reel
NSVUMZ1NT1G	SC-88 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Q1: NPN ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector–Emitter Breakdown Voltage $(I_C = 2.0 \text{ mAdc}, I_B = 0)$		50	-	-	Vdc
Collector–Base Breakdown Voltage ($I_C = 10 \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	60	-	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	7.0	-	-	Vdc
Collector–Base Cutoff Current (V _{CB} = 45 Vdc, I _E = 0)	I _{CBO}	-	-	0.1	μAdc
	I _{CEO}	- - -	- - -	0.1 2.0 1.0	μAdc μAdc mAdc
DC Current Gain (Note 3) (V _{CE} = 6.0 Vdc, I _C = 2.0 mAdc)	h _{FE}	200	-	400	-
Collector–Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	-	-	0.25	Vdc
Transistor Frequency	f _T	-	114	-	MHz


^{3.} Pulse Test: Pulse Width $\leq 300~\mu s,~D.C. \leq 2\%.$


Q2: PNP ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Collector–Emitter Breakdown Voltage (I _C = 2.0 mAdc, I _B = 0)		-50	-	-	Vdc
Collector–Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	-60	-	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	V _{(BR)EBO}	-7.0	-	-	Vdc
Collector–Base Cutoff Current $(V_{CB} = 45 \text{ Vdc}, I_E = 0)$	I _{CBO}	-	-	-0.1	μAdc
	I _{CEO}	- - -	- - -	-0.1 -2.0 -1.0	μAdc μAdc mAdc
DC Current Gain (Note 3) (V _{CE} = 6.0 Vdc, I _C = 2.0 mAdc)	h _{FE}	200	-	400	-
Collector–Emitter Saturation Voltage ($I_C = 100 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$)	V _{CE(sat)}	-	-	-0.3	Vdc
Transistor Frequency	f _T	-	142	-	MHz

TYPICAL ELECTRICAL CHARACTERISTICS: PNP TRANSISTOR

TYPICAL ELECTRICAL CHARACTERISTICS: NPN TRANSISTOR

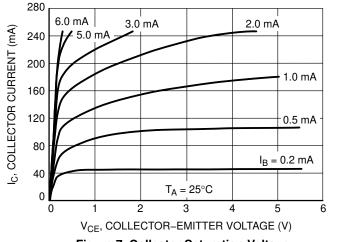


Figure 7. Collector Saturation Voltage

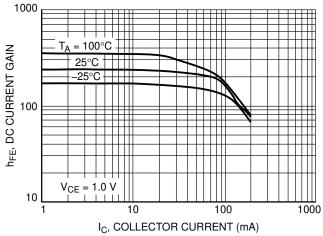


Figure 8. DC Current Gain

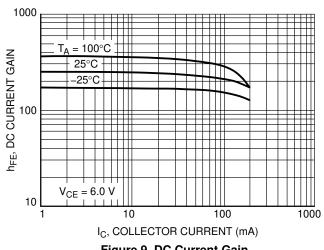


Figure 9. DC Current Gain

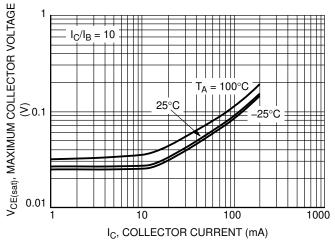


Figure 10. V_{CE(sat)} versus I_C

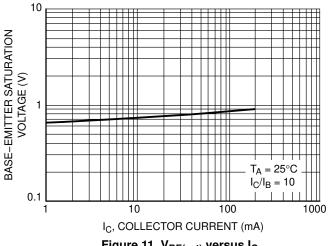
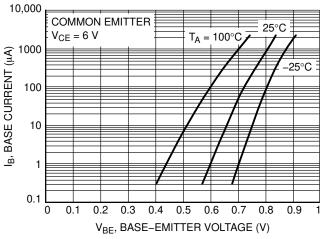
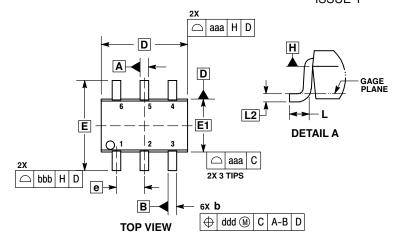
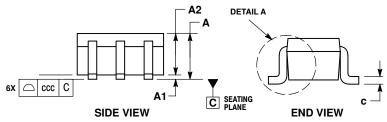


Figure 11. V_{BE(sat)} versus I_C


Figure 12. Base-Emitter Voltage

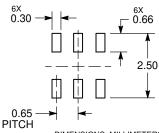
PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363

CASE 419B-02 **ISSUE Y**

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.

 DATUMS A AND B ARE DETERMINED AT DATUM H.


 DIMENSIONS BAND A ARD TO THE ELAT SECTION OF THE

- DIMENSIONS 6 AND 6 APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN

EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL COND TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWE RADIUS OF THE FOOT.									
	MILLIMETERS INCHES								
DIM	MIN NOM MAX MIN NOM MAX								
Α			1.10			0.043			
A1	0.00		0.10	0.000		0.004			

A1	0.00		0.10	0.000		0.004	
A2	0.70	0.90	1.00	0.027	0.035	0.039	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.08 0.15		0.22	0.003	0.006	0.009	
D	1.80	2.00	2.20	0.070	0.078	0.086	
E	2.00	2.10	2.20	0.078	0.082	0.086	
E1	1.15 1.25		1.35	0.045	0.049	0.053	
е	0.65 BSC			0.026 BSC			
L	0.26	0.36	0.46	0.010	0.014	0.018	
L2		0.15 BS	C	0.006 BSC			
aaa		0.15		0.006			
bbb	0.30			0.012			
ccc		0.10		0.004			
ddd		0.10			0.004		

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

0