: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1GHz INPUT DIVIDE BY 2, 4, 8 PRESCALER IC FOR PORTABLE SYSTEMS

$\mu \mathrm{PB} 1509 \mathrm{GV}$ is a divide by 2,4 , 8 prescaler IC for portable radio or cellular telephone applications. $\mu \mathrm{PB} 1509 \mathrm{GV}$ is a shrink package version of μ PB587G so that this small package contributes to reduce the mounting space.
$\mu \mathrm{PB} 1509 \mathrm{GV}$ is manufactured using the high $\mathrm{fT} \mathrm{NESAT}^{\mathrm{TM}}$ IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- High toggle frequency : fin $=50 \mathrm{MHz}$ to $700 \mathrm{MHz} @ \div 2$,

50 MHz to 800 MHz @ $\div 4$,
50 MHz to $1000 \mathrm{MHz} @ \div 8$

- Low current consumption
: 5.0 mA @ Vcc $=3.0 \mathrm{~V}$
- High-density surface mounting
: 8 pin plastic SSOP (175mil)
- Supply voltage
: $\mathrm{Vcc}=2.2$ to 5.5 V
- Selectable division
$: \div 2, \div 4, \div 8$

APPLICATION

- Portable radio systems
- Cellular/cordless telephone 2nd Local prescaler and so on.

ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	SUPPLYING FORM
μ PB1509GV-E1-A	8 pin plastic SSOP $(175$ mil) $($ Pb-Free $)$	1509	Embossed tape 8 mm wide. Pin 1 is in tape pull-out direction. $1000 \mathrm{p} / \mathrm{ree}$.

Remarks : To order evaluation samples, please contact your local nearby sales office. (Part number for sample order: μ PB1509GV-A)

PIN CONNECTION (Top View)

Pin NO.	Pin Name
1	$\mathrm{~V}_{\mathrm{cC} 1}$
2	IN
3	$\overline{\mathrm{~N}}$
4	GND
5	SW1
6	SW2
7	OUT
8	VCc_{2}

PRODUCT LINE-UP

Product No.	Icc (mA)	Vcc (V)	$\div 2$ fin (MHz)	$\div 4$ fin (MHz)	$\div 8$ fin (MHz)	Package	Pin Connection
μ PB587 G	5.5	2.2 to 3.5	50 to 300	50 to 600	50 to 1000	8 pin SOP (225 mil)	NEC Original
μ PB1509 GV	5.0	2.2 to 5.5	50 to 700	50 to 800	50 to 1000	8 pin SSOP (175 mil)	N

Remarks

This table shows the TYP values of main parameters. Please refer to ELECTRICAL CHARACTERISTICS. $\mu \mathrm{PB} 587 \mathrm{G}$ is discontinued.

INTERNAL BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE

One of the example for usage

This block diagram schematically shows the μ PB1509GV's location in one of the example application system. The other applications are also acceptable for divider use.

Pin Explanations

Pin No.	Symbol	Applied Voltage	Pin Voltage	Functions and Explanation
1	$\mathrm{V}_{\mathrm{CC1}}$	2.2 to 5.5	-	Power supply pin of a input amplifier and dividers. This pin must be equipped with bypass capacitor (eg 1000 pF) to minimize ground impedance.
2	IN	-	1.7 to 4.95	Signal input pin. This pin should be coupled to signal source with capacitor (eg 1000 pF) for DC cut.
3	$\overline{\mathrm{N}}$	-	1.7 to 4.95	Signal input bypass pin. This pin must be equipped with bypass capacitor (eg 1000 pF) to minimize ground impedance.
4	GND	0	-	Ground pin. Ground pattern on the board should be formed as wide as possible to minimize ground impedance.
5	SW1	H/L	-	Divide ratio control pin. Divide ratio can be determined by following applied level to these pins.
6	SW2	H/L	-	SW2
				These pins must be each equipped with bypass capacitor to minimize their impedance.
7	OUT	-	1.0 to 4.7	Divided frequency output pin. This pin is designed as emitter follower output. This pin can output 0.1 Vp-p min with 200Ω load. This pin should be coupled to load device with capacitor (eg 1000 pF) for DC cut.
8	Vcc2	2.2 to 5.5	-	Power supply pin of output buffer amplifier. This pin must be equipped with bypass capacitor (eg 1000 pF) to minimize ground impedance.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITION	RATINGS	UNIT
Supply voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	6.0	V
Input voltage	V_{in}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{SW} 1, \mathrm{SW} 2$ pins	6.0	V
Total power dissipation	PD	Mounted on double sided copper clad $50 \times 50 \times 1.6$ mm epoxy glass PWB $\left(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right)$	250	mW
Operating ambient temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTICE
Supply voltage	$\mathrm{V}_{c \mathrm{C}}$	2.2	3.0	5.5	V	
Operating ambient temperature	T_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.2$ to 5.5 V)

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Circuit current	Icc	No signals, $\mathrm{Vcc}=3.0 \mathrm{~V}$	3.5	5.0	5.9	mA
Upper Limit Operating Frequency 1	fin(U) 1	$\mathrm{Pin}_{\text {in }}=-20$ to 0 dBm	500	-	-	MHz
Upper Limit Operating Frequency 2	$\mathrm{fin}_{\text {in }}(\mathrm{U})$	$\begin{array}{r} \text { Pin }=-20 \text { to }-5 \mathrm{dBm} @ \div 2 \\ @ \div 4 \\ @ \div 8 \end{array}$	$\begin{gathered} 700 \\ 800 \\ 1000 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	MHz
Lower Limit Operating Frequency 1	$\mathrm{fin}_{(L) 1}$	Pin $=-20$ to 0 dBm	-	-	50	MHz
Lower Limit Operating Frequency 2	$\mathrm{fin}^{(L) 2}$	Pin $=-20$ to -5 dBm	-	-	500	MHz
Input Power 1	Pin1	$\mathrm{fin}^{\text {a }}$ = 50 MHz to 1000 MHz	-20	-	-5	dBm
Input Power 2	Pin2	$\mathrm{fin}^{\text {= }} 50 \mathrm{MHz}$ to 500 MHz	-20	-	0	dBm
Output Voltage	Vout	$\mathrm{RL}=200 \Omega$	0.1	0.2	-	Vp.p
Divide ratio control input high	$\mathrm{V}_{\mathrm{H} 1}$	Connection in the test circuit	Vcc	Vcc	Vcc	-
Divide ratio control input low	VIL1	Connection in the test circuit	OPEN or GND	OPEN or GND	OPEN or GND	-
Divide ratio control input high	V_{1+2}	Connection in the test circuit	Vcc	Vcc	Vcc	-
Divide ratio control input low	VIL2	Connection in the test circuit	$\begin{gathered} \text { OPEN } \\ \text { or } \\ \text { GND } \end{gathered}$	OPEN or GND	$\begin{gathered} \text { OPEN } \\ \text { or } \\ \text { GND } \end{gathered}$	-

TEST CIRCUIT

Signal Generator (HP-8665A)
Counter (HP-5350B) for measuring input sensitivity (Spectrum Analyzer for measuring output frequency)
Oscilloscope for measuring output swing (In measuring output power on Spectrum Analyzer, oscilloscope should be turned off.)

Divide Ratio Setting

		SW2	
		H	L
SW1	H	$1 / 2$	$1 / 4$
	L	$1 / 4$	$1 / 8$

H: SW pin should be connected to $\mathrm{Vccc}_{\mathrm{c}}$ pin.
L: SW pin should be opened or connected to GND.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

Component List

No.	Value
C1 to C 7	1000 pF
R1	$150 \Omega^{\text {Note }}$

Notes for evaluation board

(1) $35 \mu \mathrm{~m}$ thick double sided copper clad $50 \times 50 \times 0.4 \mathrm{~mm}$ polyimide board
(2) Back side : GND pattern
(3) Solder plated on pattern
(4) ○O : Through holes
(5) \boldsymbol{P}^{\prime} : Remove pattern

Note For Output load of IC, R1 is determined as follows; R1 + Impedance of measurement equipment = 200Ω.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

The usage and applications of μ PB1509GV should be referred to the application note (Document No. P12611E).

CHARACTERISTIC CURVES

Divide by 2 mode (Guaranteed operating window: $\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Output voltage swing vs. Input frequency

Output voltage swing vs. Input frequency

Divide by 4 mode (Guaranteed operating window: $\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Divide by 8 mode (Guaranteed operating window: $\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

S11 vs. Input Frequency

$$
\begin{aligned}
& \text { REF } 1.0 \text { Units/ } \\
& 2 \\
& 200.0 \text { mUnits/ } \\
& \nabla \quad 55.375 \Omega-142.79 \Omega
\end{aligned}
$$

$\mathrm{VCC1}=\mathrm{V} \mathrm{CC2}=3.0 \mathrm{~V}, \mathrm{SW} 1=\mathrm{SW} 2=3.0 \mathrm{~V}$

FREQUENCY	S11	
MHz	MAG	ANG
100.0000	.929	-6.7
200.0000	.898	-10.5
300.0000	.866	-13.6
400.0000	.840	-159
500.0000	.834	-19.1
600.0000	.819	-21.9
700.0000	.803	-24.7
800.0000	.792	-27.0
900.0000	.787	-30.0
1000.0000	.771	-32.7

S_{22} vs. Output Frequency

S_{22}
REF 1.0 Units/

$$
200.0 \text { mUnits/ }
$$

$$
\mathrm{z}
$$

PACKAGE DIMENSIONS (UNIT: mm)
8 PIN PLASTIC SSOP (175 mil)

NOTE ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired operation).
(3) Keep the wiring length of the ground pins as short as possible.
(4) Connect a bypass capacitor (e.g. 1000 pF) to the $\mathrm{V}_{\mathrm{cc}} \mathrm{pin}$.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.

μ PB1509GV

Soldering method	$\begin{array}{l}\text { Soldering conditions }\end{array}$	$\begin{array}{l}\text { Recommended } \\ \text { condition symbol }\end{array}$		
Infrared ray reflow	$\begin{array}{l}\text { Package peak temperature: } 235^{\circ} \mathrm{C}, \\ \text { Hour: within } 30 \text { s. (more than } 210^{\circ} \mathrm{C} \text {), } \\ \text { Time: } 3 \text { times, Limited days: } \mathrm{no} .^{*}\end{array}$	IR35-00-3	$]$	VP15-00-3
:---				

* It is the storage days after opening a dry pack, the storage conditions are $25^{\circ} \mathrm{C}$, less than $65 \% \mathrm{RH}$.

Caution The combined use of soldering method is to be avoided (However, except the pin area heating method).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

