imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BIPOLAR DIGITAL INTEGRATED CIRCUIT

3.0 GHz INPUT DIVIDE BY 4 PRESCALER IC FOR DBS TUNERS

DESCRIPTION

The UPB1510GV is a 3.0 GHz input divide by 4 prescaler IC for DBS tuner applications. This IC is suitable for use of frequency divider for PLL synthesizer block. This IC is a shrink package version of the μ PB585G so that this small package contributes to reduce the mounting space.

This IC is manufactured using our 20 GHz fr NESAT IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- High operating frequency : fin = 0.5 to 3.0 GHz
- High-density surface mounting : 8-pin plastic SSOP (4.45 mm (175))
- Low current consumption
 : Icc = 14 mA TYP. @ Vcc = 5 V
- Fixed division :÷ 4

APPLICATIONS

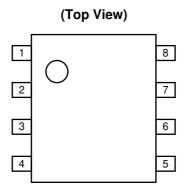
- · Prescaler between local oscillator and PLL frequency synthesizer included modulus prescaler
- · DBS tuners with kit use of VHF/UHF band PLL frequency synthesizer

ORDERING INFORMATION (Solder Contains Lead)

Part Number	Package	Marking	Supplying Form
<i>µ</i> PB1510GV-E1	8-pin plastic SSOP (4.45 mm (175))	1510	 Embossed tape 8 mm wide Pin 1 indicates pull-out direction of tape Qty 1 kpcs/reel

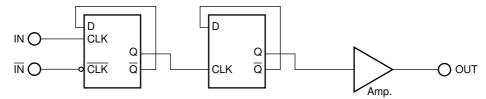
Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μ PB1510GV

ORDERING INFORMATION (Pb-Free)

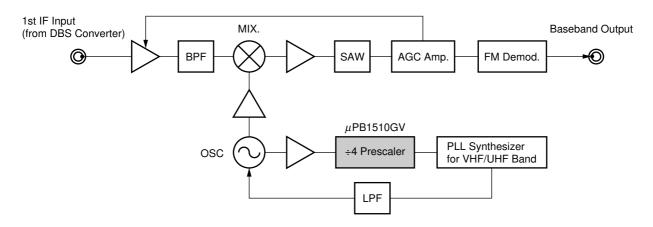

Part Number	Package	Marking	Supplying Form
<i>µ</i> РВ1510GV-Е1-А	8-pin plastic SSOP (4.45 mm (175))	1510	 Embossed tape 8 mm wide Pin 1 indicates pull-out direction of tape Qty 1 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μ PB1510GV

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS


Pin No.	Pin Name
1	Vcc
2	IN
3	ĪN
4	GND
5	GND
6	NC
7	OUT
8	NC

INTERNAL BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE

RF unit block of DBS tuners

PIN EXPLANATION

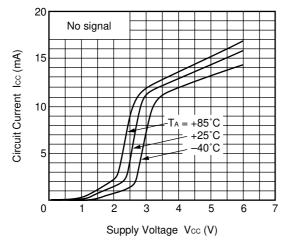
Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V)	Function and Application
1	Vcc	4.5 to 5.5	-	Supply voltage pin.
				This pin must be equipped with bypass capacitor (example: 1 000 pF) to minimize ground impedance.
2	IN	_	1.7 to 4.95	Signal input pin.
				This pin should be coupled to signal source with capacitor (example: 1 000 pF) for DC cut.
3	ĪN	-	1.7 to 4.95	Signal input bypass pin.
				This pin must be equipped with bypass capacitor (example: 1 000 pF) to minimize ground impedance.
4, 5	GND	0	-	Ground pin.
				Ground pattern on the board should be formed as wide as possible to minimize ground impedance.
6, 8	NC	-	_	Non connection pins.
				These pins should be opened.
7	OUT	-	1.0 to 4.7	Divided frequency output pin.
				This pin is designed as emitter follower output. This pin can be connected to input of prescaler within PLL synthesizer through DC cut capacitor.

ABSOLUTE MAXIMUM RATINGS

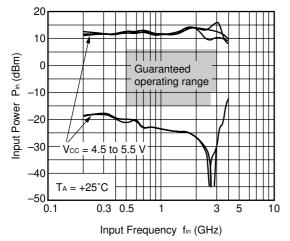
Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C	6.0	V
Power Dissipation	PD	T _A = +85°C Note	250	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

Note Mounted on double-sided copper-clad 50 \times 50 \times 1.6 mm epoxy glass PWB

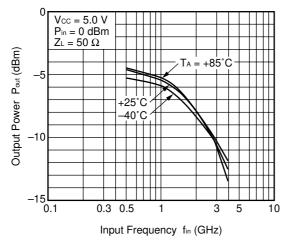
RECOMMENDED OPERATING RANGE

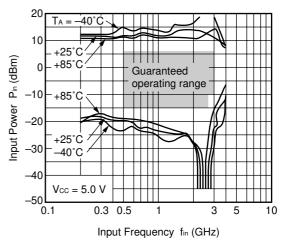

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Operating Ambient Temperature	TA	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (TA = -40 to +85°C, Vcc = 4.5 to 5.5 V, Zs = ZL = 50 Ω)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	lcc	No Signals	10.5	14	17	mA
Upper Limit Operating Frequency 1	fin (U)1	$P_{in} = -10$ to +6 dBm	3.0	-	-	GHz
Upper Limit Operating Frequency 2	fin (U)2	$P_{in} = -15$ to +6 dBm	2.7	-	-	GHz
Lower Limit Operating Frequency	fin (L)	$P_{in} = -15$ to +6 dBm	-	-	0.5	GHz
Input Power 1	Pin1	fin = 2.7 to 3.0 GHz	-10	-	+6	dBm
Input Power 2	Pin2	fin = 0.5 to 2.7 GHz	-15	-	+6	dBm
Output Power	Pout	$P_{in} = 0 \text{ dBm}, f_{in} = 2.0 \text{ GHz}$	-12	-7	_	dBm

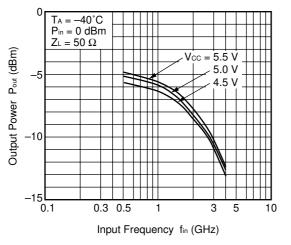
TYPICAL CHARACTERISTICS (TA = +25°C, Vcc = 5 V, unless otherwise specified)


CIRCUIT CURRENT vs. SUPPLY VOLTAGE


INPUT POWER vs. INPUT FREQUENCY

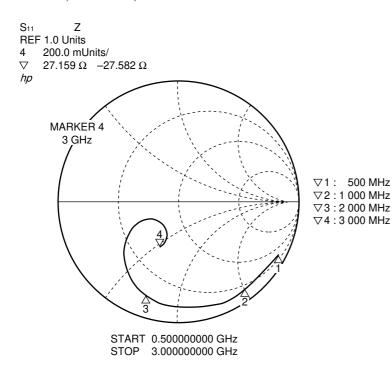

OUTPUT POWER vs. INPUT FREQUENCY

INPUT POWER vs. INPUT FREQUENCY

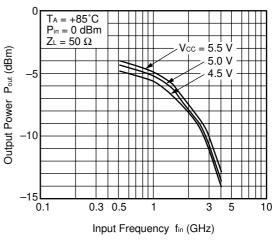


OUTPUT POWER vs. INPUT FREQUENCY

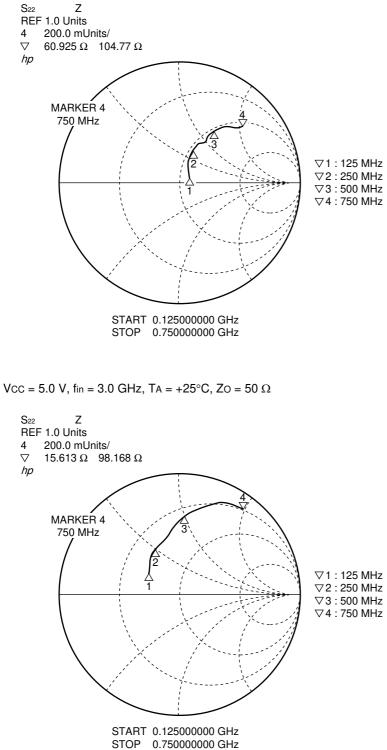
Input Frequency fin (GHz)


OUTPUT POWER vs. INPUT FREQUENCY

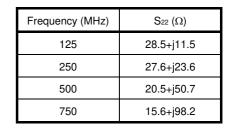
Remark The graphs indicate nominal characteristics.


S11 vs. INPUT FREQUENCY

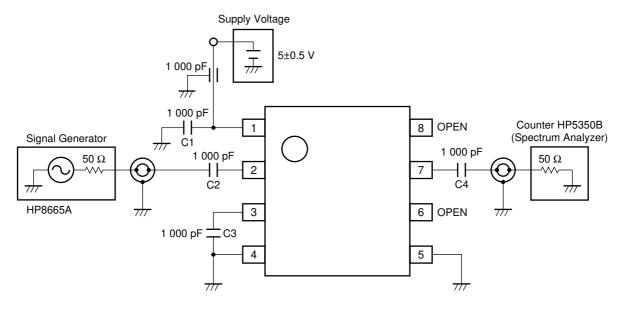
Vcc = 5.0 V, TA = +25°C, ZO = 50 Ω

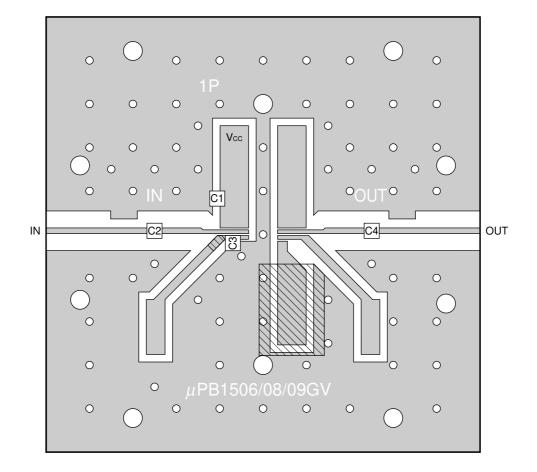

Frequency (MHz)	S11 (Ω)
500	37.1–j207.8
1 000	14.2–j105.1
2 000	7.9–j35.8
3 000	27.1–j27.5

OUTPUT POWER vs. INPUT FREQUENCY



S22 vs. OUTPUT FREQUENCY


VCC = 5.0 V, fin = 500 MHz, TA = +25°C, ZO = 50 Ω

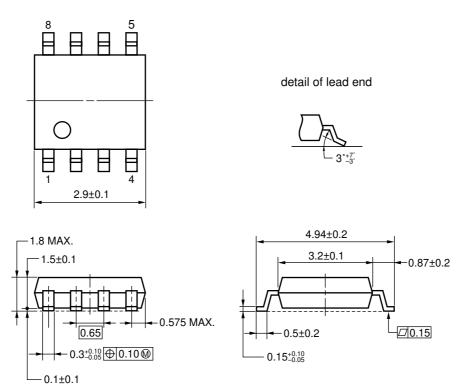

Frequency (MHz)	S22 (Ω)
125	55.5+j6.7
250	53.7+j30.4
500	55.0+j60.3
750	60.9+j104.8

TEST CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST


	Value
C1 to C4	1 000 pF

Notes

- (1) 35 μ m thick double-sided copper-clad 50 \times 50 \times 0.4 mm polyimide board.
- (2) Back side : GND pattern
- (3) Solder plated on pattern
- (4) $\circ \bigcirc$: Through holes
- (5) of pin 3 : Pattern should be removed.
- (6) of pin 5: Short chip must be attached to be grounded.

★ PACKAGE DIMENSIONS

8-PIN PLASTIC SSOP (4.45 mm (175)) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
- (3) Keep the wiring length of the ground pins as short as possible.
- (4) Connect a bypass capacitor (example: 1 000 pF) to the Vcc pin.

★ RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).