

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BIPOLAR ANALOG INTEGRATED CIRCUIT

μ PC3237TK

LOW NOISE WIDE BAND SILICON GERMANIUM MMIC AMPLIFIER FOR MOBILE COMMUNICATIONS

DESCRIPTION

The μ PC3237TK is a silicon germanium (SiGe) monolithic integrated circuit designed as low noise amplifier for the mobile digital TV etc. This device exhibits low noise figure and high power gain characteristics.

This package is 6-pin lead-less minimold, suitable for surface mount.

This IC is manufactured using our 50 GHz fmax UHS2 (Ultra High Speed Process) SiGe bipolar process.

FEATURES

Supply voltage : Vcc = 2.4 to 3.3 V (2.8 V TYP.)
 Low current consumption : Icc = 5 mA TYP. @ Vcc = 2.8 V
 Low Noise : NF = 1.4 dB TYP. @ f = 470 MHz
 : NF = 1.5 dB TYP. @ f = 770 MHz

Power gain : $G_P = 15.3 \text{ dB TYP.}$ @ f = 470 MHz

: $G_P = 13.5 \text{ dB TYP.}$ @ f = 770 MHz

High-density surface mounting: 6-pin lead-less minimold package (1.5 x 1.1 x 0.55 mm)

APPLICATIONS

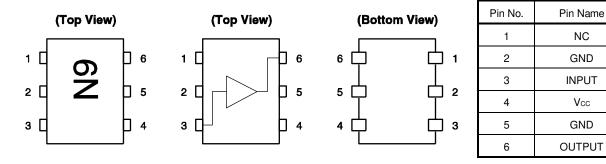
· Low noise amplifier for the mobile digital TV etc.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPC3237TK-E2	μPC3237TK-E2-A	· · · · · · · · · · · · · · · · · · ·		Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape
		(101111Kd) (1 b 11cc)		• Qty 5 kpcs/reel

Remark To order evaluation samples, please contact your nearby sales office

Part number for sample order: μ PC3237TK-A


Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

NC

Vcc

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

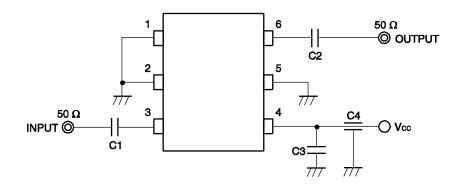
Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C	3.6	V
Circuit Current	lcc	T _A = +25°C	10	mA
Power Dissipation	PD	$T_A = +85^{\circ}C$ Note	203	mW
Operating Ambient Temperature	Та		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin	T _A = +25°C	+8	dBm

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.4	2.8	3.3	V
Operating Ambient Temperature	TA	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{CC} = 2.8 V, Z_S = Z_L = 50 Ω , unless otherwise specified)

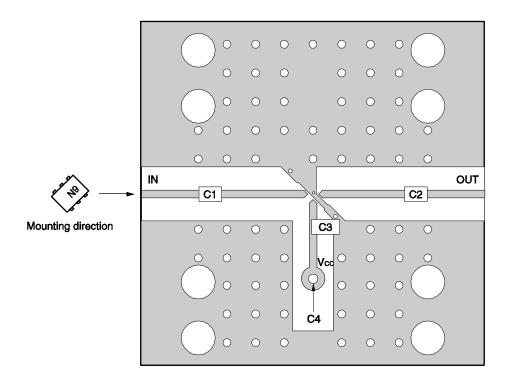

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No input signal	3.5	5	7	mA
Power Gain 1	G _P 1	f = 470 MHz, Pin = -30 dBm	13.0	15.3	17.5	dB
Power Gain 2	G _P 2	f = 770 MHz, Pin = -30 dBm	11.0	13.5	16.0	dB
Noise Figure 1	NF1	f = 470 MHz	-	1.4	1.9	dB
Noise Figure 2	NF2	f = 770 MHz	=	1.5	2.0	dB
Input Return Loss 1	RLin1	f = 470 MHz, Pin = -30 dBm	6.5	9.5	-	dB
Input Return Loss 2	RLin2	f = 770 MHz, Pin = -30 dBm	5.5	8.5	-	dB
Output Return Loss 1	RLout1	f = 470 MHz, Pin = -30 dBm	9	14	-	dB
Output Return Loss 2	RLout2	f = 770 MHz, Pin = -30 dBm	10	15	-	dB
Isolation 1	ISL1	f = 470 MHz, Pin = -30 dBm	17	22	-	dB
Isolation 2	ISL2	f = 770 MHz, Pin = -30 dBm	16	21	-	dB
Gain 1 dB Compression Output Power 1	Po (1 dB) 1	f = 470 MHz	-8	-5.5	-	dBm
Gain 1 dB Compression Output Power 2	Po (1 dB) 2	f = 770 MHz	-8	-5.5	-	dBm

STANDARD CHARACTERISTICS FOR REFERENCE

(T_A = +25°C, V_{CC} = 2.8 V, Z_S = Z_L = 50 Ω , unless otherwise specified)

Parameter	Symbol	Test Conditions	Reference Value	Unit
Saturated Output Power 1	Po (sat) 1	f = 470 MHz, Pin = +2 dBm	+1.3	dBm
Saturated Output Power 2	Po (sat) 2	f = 770 MHz, Pin = +2 dBm	+1.3	dBm
Input 3rd Order Distortion Intercept Point 1	IIP₃1	f1 = 470 MHz, f2 = 471 MHz	-10.5	dBm
Input 3rd Order Distortion Intercept Point 2	IIP₃2	f1 = 770 MHz, f2 = 771 MHz	-9.5	dBm
Output 3rd Order Distortion Intercept Point 1	OIP₃1	f1 = 470 MHz, f2 = 471 MHz	+4.8	dBm
Output 3rd Order Distortion Intercept Point 2	OIP₃2	f1 = 770 MHz, f2 = 771 MHz	+4.0	dBm
K factor 1	K1	f = 470 MHz	1.15	_
K factor 2	K2	f = 770 MHz	1.20	-

TEST CIRCUIT



The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

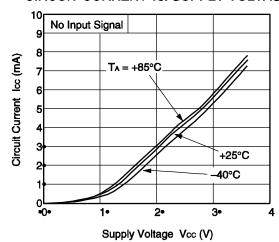
COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

	Туре	Value
C1, C2	Chip Capacitor	100 pF
C3	Chip Capacitor	1 000 pF
C4	Feed-through Capacitor	1 000 pF

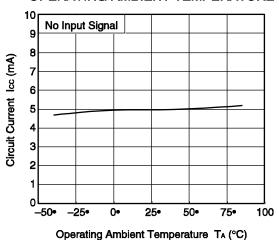
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

Notes

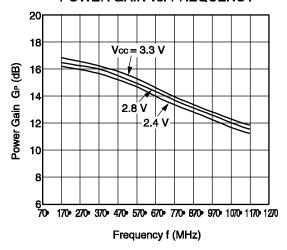
1. $30 \times 30 \times 0.4$ mm double sided copper clad FR-4 board.

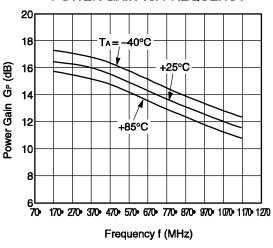

2. Back side: GND pattern

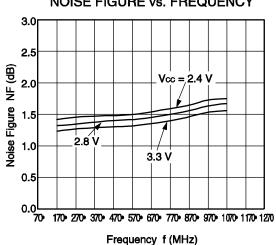
3. Au plated on pattern

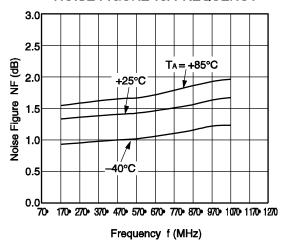

4. ∘ ○: Through holes

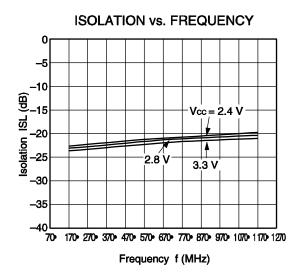
TYPICAL CHARACTERISTICS (TA = +25°C, Vcc = 2.8 V, Zs = $ZL = 50 \Omega$, unless otherwise specified)

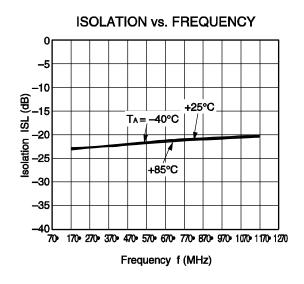

CIRCUIT CURRENT vs. SUPPLY VOLTAGE

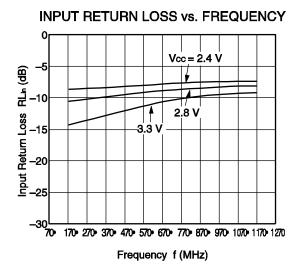

CURCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE

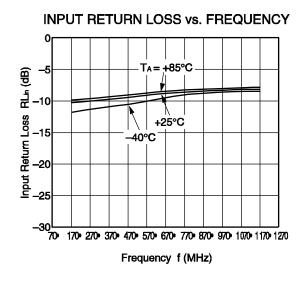

POWER GAIN vs. FREQUENCY

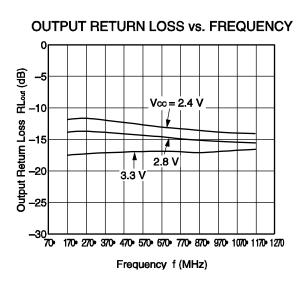

POWER GAIN vs. FREQUENCY

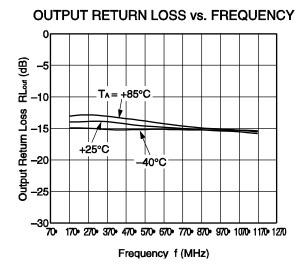

NOISE FIGURE vs. FREQUENCY

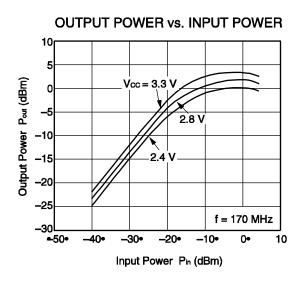


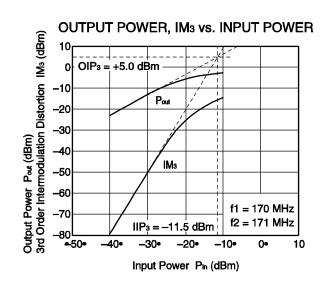

NOISE FIGURE vs. FREQUENCY

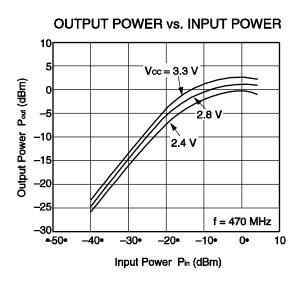


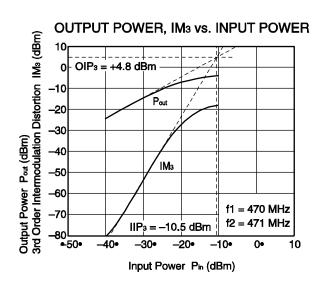

Remark The graphs indicate nominal characteristics.

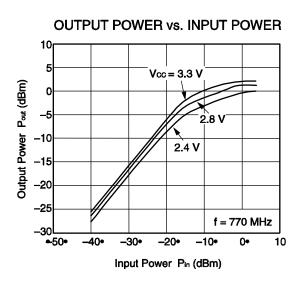


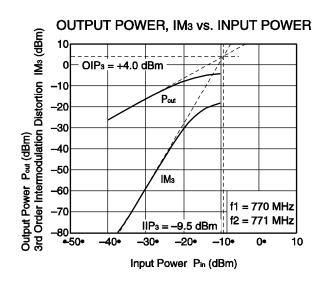


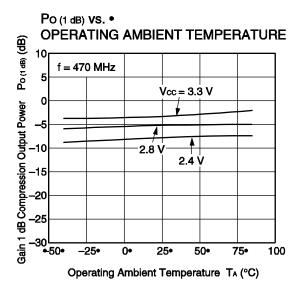


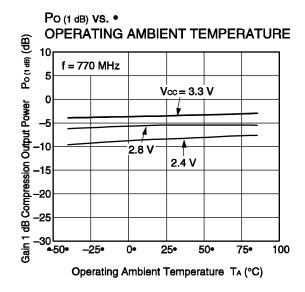


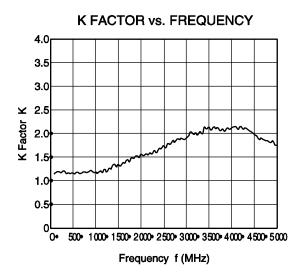



Remark The graphs indicate nominal characteristics.

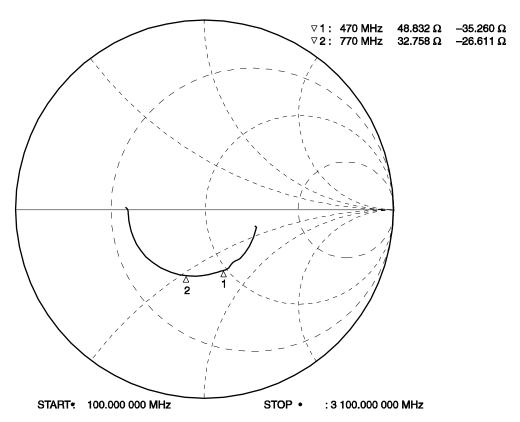


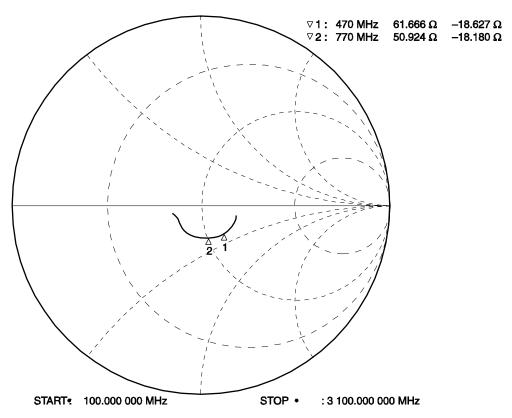






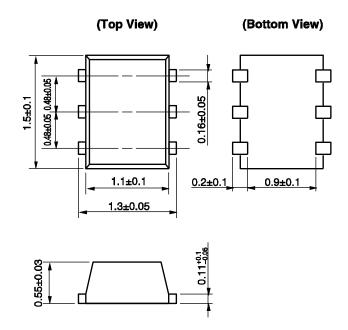
Remark The graphs indicate nominal characteristics.




Remark The graphs indicate nominal characteristics.

S-PARAMETERS (T_A = +25°C, Vcc = 2.8 V, monitored at connector on board)

S₁₁-FREQUENCY



S22-FREQUENCY

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).

 All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to the Vcc line.
- (4) The DC cut capacitor should be attached to Input and Output pin.
- (5) Pin 1 (NC) should be connected to the ground pattern.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).