: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- RECOMMENDED OPERATING FREQUENCY:
frFout $=0.4 \mathrm{GHz}$ to 2.0 GHz fiFin $=100 \mathrm{MHz}$ to 400 MHz
- SUPPLY VOLTAGE:

VCC $=2.7$ to 5.5 V

- HIGH DENSITY SURFACE MOUNTING:

6 pin super mini mold package

- LOW CARRIER LEAKAGE:

Due to double balanced mixer

- BUILT-IN POWER SAVE FUNCTION

DESCRIPTION

The UPC8106TB is a silicon RFIC designed as a frequency upconverter for cellular/cordless telephone transmitter stages and features improved intermodulation. This device is housed in a 6 pin super mini mold or SOT-363 package making it ideal for reducing system size. The UPC8106TB is manufactured using the 20 GHz ft NESAT $^{\text {TM }}$ III silicon bipolar process.
Stringent quality assurance and test procedures ensure the highest reliability and performance.

INTERNAL BLOCK DIAGRAM

APPLICATION

- CELLULAR/CORDLESS TELEPHONE

ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=$ VrFout $=3 \mathrm{~V}$, fifin $=240 \mathrm{MHz}$, PLOin $=-5 \mathrm{dBm}$, VPS $\geq 2.7 \mathrm{~V}$ unless otherwise specified)

PART NUMBER PACKAGE OUTLINE			$\begin{aligned} & \text { UPC8106TB } \\ & \text { S06 } \end{aligned}$		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Icc	$\begin{aligned} \text { Circuit Current at VPS } & \geq 2.7 \mathrm{~V} \\ \text { VPS } & =0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$	4.5	9	$\begin{gathered} 13.5 \\ 10 \end{gathered}$
CG	$\begin{aligned} \text { Conversion Gain at fRFout } & =0.9 \mathrm{GHz}, \text { PIFin } \end{aligned}=-30 \mathrm{dBm},$	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 9 \\ & 7 \end{aligned}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$
Psat	$\begin{aligned} & \hline \text { Saturated Output Power at fRFout }=0.9 \mathrm{GHz}, \text { PIFin } \\ & \text { fRFout }=1.9 \mathrm{GHz}, \text { PIFm } \\ &=0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$	$\begin{gathered} \hline-4 \\ -6.5 \end{gathered}$	$\begin{aligned} & \hline-2 \\ & -4 \end{aligned}$	
OIP3	Output Third-Order Intercept Point at fIFin1 $=240.0 \mathrm{MHz}$ fiFin2 $=240.4 \mathrm{MHz}$ fRFout $=0.9 \mathrm{GHz}$ PIFin $=-20 \mathrm{dBm}$ fRFout $=1.9 \mathrm{GHz}$	dBm dBm		$\begin{aligned} & +5.5 \\ & +2.0 \end{aligned}$	
$1 \mathrm{M}_{3}$	Third-Order Intermodulation Level at fifin1 $=240 \mathrm{MHz}$ fiFin2 $=240.4 \mathrm{MHz}$ fRFout $=0.9 \mathrm{GHz}$ PIFin $=-20 \mathrm{dBm}$ fRFout $=1.9 \mathrm{GHz}$	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$		$\begin{aligned} & -31 \\ & -30 \end{aligned}$	
NF	SSB Noise Figure, frFout $=0.9 \mathrm{GHz}$	dB		8.5	
TPS(RISE)	Power Save Rise Time at Vps: GND \rightarrow Vcc	$\mu \mathrm{S}$		2.0	
TPS(FALL)	Power Save Fall Time at Vps: Vcc \rightarrow GND	$\mu \mathrm{S}$		2.0	

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOLS	PARAMETERS	UNITS	RATINGS
VCC	Supply Voltage Pins 5 \& 6	V	6.0
VPS	Power Save Voltage	V	6.0
PT	Total Power Dissipation ${ }^{2}$	mW	200
TOP	Operating Temperature	${ }^{\circ} \mathrm{C}$	-40 to +85
TSTG	Storage Temperature	${ }^{\circ} \mathrm{C}$	-55 to +150
PIN	Input Power	dBm	+10

Notes:

1. Operation in excess of any one of these parameters may result in permanent damage
2. Mounted on a $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass $\mathrm{PWB}\left(\mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right)$.

RECOMMENDED

 OPERATING CONDITIONS| SYMBOLS | PARAMETERS | UNITS | MIN | TYP | MAX |
| :---: | :--- | :---: | :---: | :---: | :---: |
| VCC | Supply Voltage 1 | V | 2.7 | 3.0 | 5.5 |
| Top | Operating Temperature | ${ }^{\circ} \mathrm{C}$ | -40 | +25 | +85 |
| PLo | LO Input Level 2 | dBm | -10 | -5 | 0 |
| frFout | RF Output Frequency 3 | GHz | 0.4 | | 2.5 |
| fIFin | IF Input Frequency | MHz | 100 | | 400 |

Notes:

1. The same voltage should be supplied to pin 5 and 6.
2. $Z s=50 \Omega$ (without matching).
3. With external matching circuit.

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VcC}=\mathrm{V}_{\text {RFout }}\right)$

CURRENT vs. POWER SAVE VOLTAGE

CONVERSION GAIN vs. VOLTAGE

CONVERSION GAIN vs. LOCAL INPUT LEVEL

RF OUTPUT LEVEL AND IM3 vs.

IF Input Level, PIFin (dBm)

LOCAL LEAKAGE AT IF PIN vs. LOCAL INPUT FREQUENCY

CONVERSION GAIN vs. LOCAL INPUT LEVEL

RF OUTPUT LEVEL AND IM3 vs. IF INPUT LEVEL

IF Input Level, PIFin (dBm)

LOCAL LEAKAGE AT RF PIN vs.
LOCAL INPUT FREQUENCY

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{V}_{\mathrm{RFFout}}\right)$

S-PARAMETERS FOR EACH PORT $\left(\mathrm{V}_{\mathrm{ccc}}=\mathrm{V}_{\mathrm{PS}}=\mathrm{V}_{\text {RFout }}=3.0 \mathrm{~V}\right)$

LO port

$\begin{array}{lll}\text { RF port } & \text { S22 } \quad \text { Z } \\ & \text { REF } & \text { 1.0 Units } \\ & 2 & 200.0 \text { mUnits/ } / \\ & \nabla & 26.961 \Omega \quad-87.312 \Omega \\ & h p\end{array}$
MARKER 1 900 MHz MARKER 2 1.9 GHz

S-PARAMETERS FOR EACH PORT $\left(V_{c c}=V_{p s}=V_{\text {RFout }}=3.0 \mathrm{~V}\right)$

S-PARAMETERS FOR MATCHED RF OUTPUT

$\left(\mathrm{VCC}=\mathrm{VPS}=\mathrm{VRFout}^{\mathrm{V}}=3.0 \mathrm{~V}\right)$ - with TEST CIRCUITS 1 and $2-(\mathrm{S} 22$ data is monitored at RF connector on board.)

S22
REF 1.0 Units
$1 \quad 200.0$ mUnits/
$\nabla \quad 36.59 \Omega 2.9355 \Omega$
$h p$

PIN FUNCTIONS

Note:

1. Each pin voltage is measured with $\mathrm{VCC}=\mathrm{VPS}=\mathrm{VRFout}=3.0 \mathrm{~V}$

SYSTEM APPLICATION EXAMPLE

EXAMPLE OF DECT 900 MHz Cordless Phone

(Top View)

Note:

1. In case of unstable operation, connect 100 pF capacitor between pins 4 and 5 .
(Top View)

Note:

1. In case of unstable operation, connect 100 pF capacitor between pins 4 and 5 .

OUTLINE DIMENSIONS (Units in mm)

Note:
All dimensions are typical unless otherwise specified.

ORDERING INFORMATION

PART NUMBER	QTY
UPC8106TB-E3-A	3K/Reel

Note:
Embossed Tape, 8 mm wide,
Pins 1, 2, and 3 face tape perforation side.

LEAD CONNECTIONS

(Top View)

(Bottom View)

1. IF INPUT
2. GND
3. LO INPUT
4. POWER SAVE
5. Vcc
6. RF OUTPUT
