

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

SIGE LOW NOISE AMPLIFIER FOR GPS/MOBILE COMMUNICATIONS

DESCRIPTION

The μ PC8211TK is a silicon germanium (SiGe) monolithic integrated circuit designed as a low noise amplifier for GPS and mobile communications.

The package is 6-pin lead-less minimold, suitable for surface mount.

This IC is manufactured using our 50 GHz fmax UHS2 (Ultra High Speed Process) SiGe bipolar process.

* FEATURES

Low noise : NF = 1.3 dB TYP. @ Vcc = 3.0 V
 High gain : GP = 18.5 dB TYP. @ Vcc = 3.0 V
 Low current consumption : Icc = 3.5 mA TYP. @ Vcc = 3.0 V
 Gain 1 dB compression output power : Po (1 dB) = -6.0 dBm @ Vcc = 3.0 V

· Built-in power-save function

High-density surface mounting : 6-pin lead-less minimold package (1.5 x 1.3 x 0.55 mm)

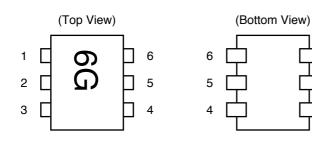
APPLICATION

· Low noise amplifier for GPS and mobile communications

ORDERING INFORMATION

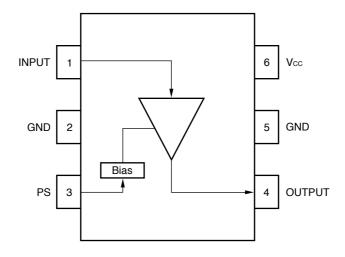
Part Number	Order Number	Package	Marking	Supplying Form
μPC8211TK-E2	μPC8211TK-E2-A	6-pin lead-less minimold (1511 PKG) (Pb-Free) Note	6G	 Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape Qty 5 kpcs/reel

Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office.


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: µPC8211TK-A

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS

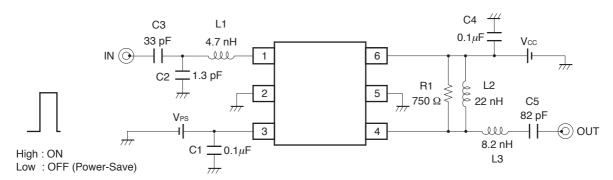
Pin No.	Pin Name
1	INPUT
2	GND
3	PS
4	OUTPUT
5	GND
6	Vcc

INTERNAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	TA = +25°C	4.0	٧
Power-Saving Voltage	V _{PS}		-0.3 to Vcc +0.3	٧
Power Dissipation of Package	Po	T _A = +85°C Note	232	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin		+10	dBm

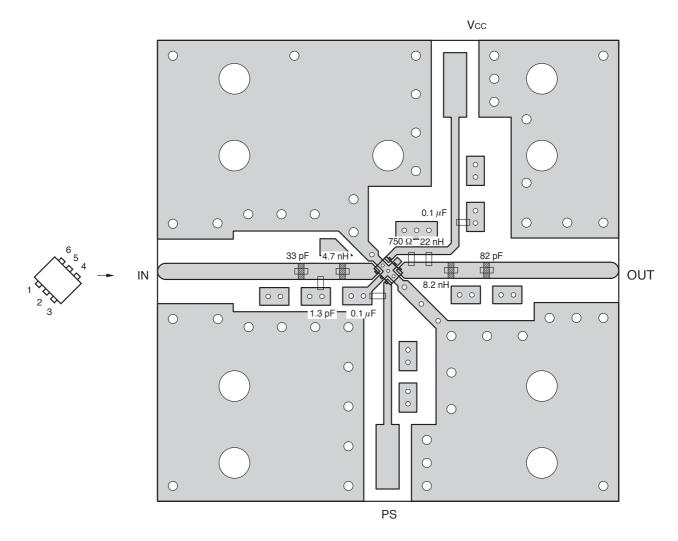
Note Mounted on double-side copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB


RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.7	3.0	3.3	V
Operating Ambient Temperature	TA	-25	+25	+85	°C
Operating Frequency Range	fin	ı	1 575	-	MHz

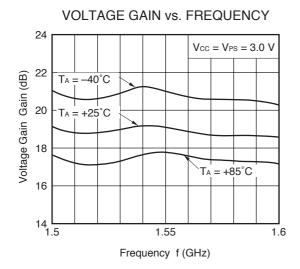
★ ELECTRICAL CHARACTERISTICS (Ta = +25°C, Vcc = 3.0 V, Vps = 3.0 V, fin = 1 575 MHz, unless otherwise specified)

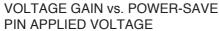
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No Signal	2.5	3.5	4.5	mA
		At Power-Saving Mode	-	-	1	μΑ
Power Gain	G₽		15.5	18.5	21.5	dB
Noise Figure	NF		-	1.3	1.5	dB
Input 3rd Order Distortion Intercept Point	IIРз		-	-12	-	dBm
Input Return Loss	RLin		6.0	7.5	-	dB
Output Return Loss	RLout		10	14.5	-	dB
Isolation	ISL		-	33.5	-	dB
Rising Voltage From Power-Saving Mode	VPSon		2.2	-	-	V
Falling Voltage From Power-Saving Mode	VPSoff		-	-	0.8	V
Gain Flatness	Flat	fr= ± 2.5 MHz	-	-	0.5	dB
Gain 1 dB Compression Output Power	Po (1 dB)		-	-6.0	-	dBm
Output Power	Po	Pin = -10 dBm	-1.5	+2.0	-	dBm

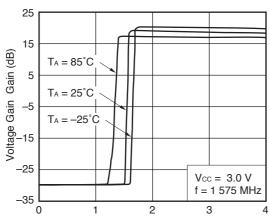

* TEST CIRCUIT

COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

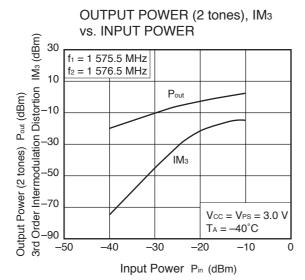
Symbol	Form	Rating	Part Number	Maker
C ₁ , C ₄	Chip Capacitor	0.1 μF	GRM36	Murata
C ₂	Chip Capacitor	1.3 pF	GRM36	Murata
Сз	Chip Capacitor	33 pF	GRM36	Murata
C ₅	Chip Capacitor	82 pF	GRM36	Murata
R ₁	Resistor	750 Ω	RR0816	Susumu
L ₁	Inductor	4.7 nH	TFL0510	Susumu
L ₂	Inductor	22 nH	TFL0816 or TFL0510	Susumu
L ₃	Inductor	8.2 nH	TFL0510	Susumu

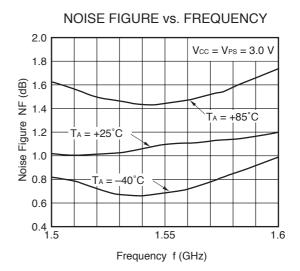

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

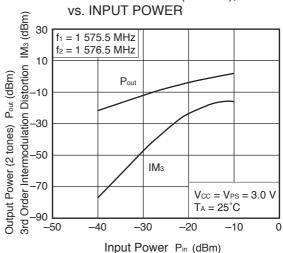


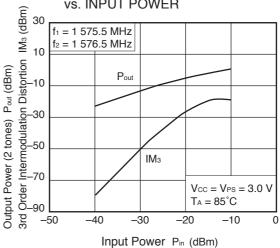

Notes

- 1. $30 \times 30 \times 0.51$ mm double-side copper-clad hydrocarbon ceramic woven glass PWB (Rogers: R04003, $\epsilon r = 3.38$).
- 2. Back side: GND pattern
- 3. Au plated on pattern
- 4. represents cutout
- 5. oO: Through holes

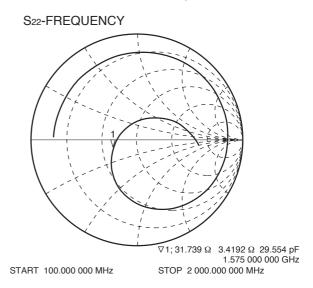

TYPICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise specified)

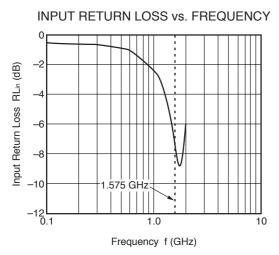


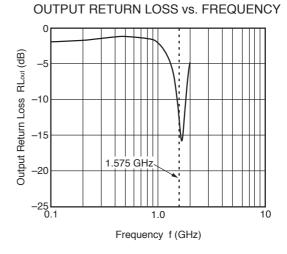

Power-Save Pin Applied Voltage VPS (V)

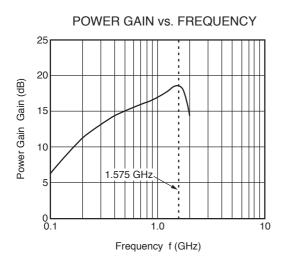

Remark The graphs indicate nominal characteristics.

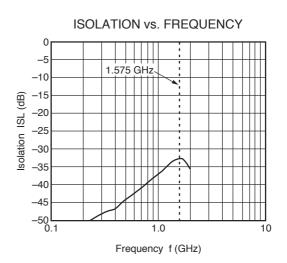

OUTPUT POWER (2 tones), IM3 vs. INPUT POWER

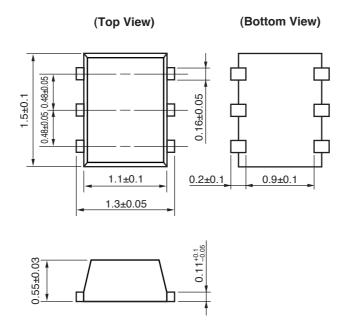



OUTPUT POWER (2 tones), IM3 vs. INPUT POWER




S-PARAMETERS (TA = +25°C, Vcc = Vps = 3.0 V, monitored at connector on board)





Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)

Remark (): Reference value

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
 All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).