: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

WIDE BAND DPDT SWITCH

DESCRIPTION

The μ PD5738T6N is a CMOS MMIC DPDT (Double Pole Double Throw) switch which is developed for mobile communications, wireless communications and another RF switching applications.

This device can operate within frequency from 0.01 to 2.5 GHz , having low insertion loss and high isolation performances. This device is housed in a 6 -pin plastic TSON (Thin Small Out-line Non-leaded) (T6N) package, which allows high-density surface mounting.

FEATURES

- Supply voltage
- Switch control voltage
- Low insertion loss ${ }^{\text {Note }}$
- High isolation Note
- Handling power Note
: $\mathrm{VDD}=1.5$ to 3.6 V (2.8 V TYP.)
: $\mathrm{V}_{\text {cont }(H)}=1.5$ to 3.6 V (2.8 V TYP.)
: $\mathrm{V}_{\text {cont }}(\mathrm{L})=-0.2$ to +0.4 V (0 V TYP.)
: Lins $1=0.5 \mathrm{~dB}$ TYP. @ $\mathrm{f}=0.01$ to 0.05 GHz
: Lins2 = 0.8 dB TYP. @ $\mathrm{f}=0.05$ to 1.0 GHz
: Lins3 = 1.4 dB TYP. @ f=1.0 to 2.0 GHz
: Lins4 = 1.6 dB TYP. @ $\mathrm{f}=2.0$ to 2.5 GHz
: ISL1 = 45 dB TYP. @ $f=0.01$ to 0.05 GHz
: ISL2 = 22 dB TYP. @ f = 0.05 to 1.0 GHz
: ISL3 = 16 dB TYP. @ $\mathrm{f}=1.0$ to 2.0 GHz
: ISL4 = 15 dB TYP. @ f = 2.0 to 2.5 GHz
$: \operatorname{Pin}(1 \mathrm{~dB})=+20 \mathrm{dBm}$ TYP. @ $\mathrm{f}=1.0 \mathrm{GHz}$
: $\operatorname{Pin}(0.1 \mathrm{~dB})=+15 \mathrm{dBm}$ TYP. @ $\mathrm{f}=1.0 \mathrm{GHz}$
- High-density surface mounting: 6-pin plastic TSON (T6N) package ($1.5 \times 1.5 \times 0.37 \mathrm{~mm}$)
- High ESD voltage : machine-model 200 V (TYP.), human-body-model 3 kV (TYP.)

Note $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {cont }}(\mathrm{H})=2.8 \mathrm{~V}, \mathrm{~V}_{\text {cont }}(\mathrm{L})=0 \mathrm{~V}$

APPLICATIONS

- Mobile communications
- Wireless communications
- Another RF switching applications

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μ PD5738T6N-E2	μ PD5738T6N-E2-A	6-pin plastic TSON (T6N) (Pb-Free)	C3X	•Embossed tape 8 mm wide \bullet Pin 1,6 face the perforation side of the tape \bullet Qty $3 \mathrm{kpcs} /$ reel

Remark To order evaluation samples, please contact your nearby sales office.
Part number for sample order: μ PD5738T6N-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

[^0]
PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

TRUTH TABLE

V cont	INPUT1-OUTPUT1, INPUT2-OUTPUT2	INPUT1-OUTPUT2, INPUT2-OUTPUT1
Low	ON	OFF
High	OFF	ON

Remark High: +2.8 V, Low: 0 V
ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}} \mathbf{= + 2 5 ^ { \circ }} \mathbf{C}$, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	$\mathrm{V}_{\text {DD }}$	-0.5 to +4.6	V
Switch Control Voltage	$\mathrm{V}_{\text {cont }}$	-0.5 to +4.6	V
Voltage Difference	$\mathrm{V}_{\text {cont }}(\mathrm{H})$ $-\mathrm{V}_{\mathrm{DD}}$	+0.5	V
Input Power	$\mathrm{P}_{\text {in }}$	+23	dBm
Operating Ambient Temperature	T_{A}	-45 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGE ($\mathrm{T}_{\mathrm{A}}=+\mathbf{+ 2 5 ^ { \circ }} \mathbf{C}$, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	$\mathrm{V}_{\text {DD }}$	+1.5	+2.8	+3.6	V
Switch Control Voltage (H)	$\mathrm{V}_{\text {cont }(\mathrm{H})}$	+1.5	+2.8	+3.6	V
Switch Control Voltage (L)	$\mathrm{V}_{\text {cont }(\mathrm{L})}$	-0.2	0	+0.4	V

Remark $\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \leq \mathrm{V}_{\text {cont }(H)} \leq \mathrm{V}_{\mathrm{DD}}+0.2 \mathrm{~V}$

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VDD}_{\mathrm{DD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {cont }(H)}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {cont }(\mathrm{L})}=0 \mathrm{~V}, \mathrm{Pin}=0 \mathrm{dBm}, \mathrm{Z}_{0}=50 \Omega\right.$, DC blocking capacitors
$=10000 \mathrm{pF}$, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins 1	$\mathrm{f}=0.01$ to 0.05 GHz	-	0.5	0.9	dB
Insertion Loss 2	Lins2	$\mathrm{f}=0.05$ to 1.0 GHz	-	0.8	1.2	dB
Insertion Loss 3	Lins3	$\mathrm{f}=1.0$ to 2.0 GHz	-	1.4	1.8	dB
Insertion Loss 4	Lins4	$\mathrm{f}=2.0$ to 2.5 GHz	-	1.6	2.0	dB
Isolation 1	ISL1	$\mathrm{f}=0.01$ to 0.05 GHz	35	45	-	dB
Isolation 2	ISL2	$\mathrm{f}=0.05$ to 1.0 GHz	18	22	-	dB
Isolation 3	ISL3	$\mathrm{f}=1.0$ to 2.0 GHz	13	16	-	dB
Isolation 4	ISL4	$\mathrm{f}=2.0$ to 2.5 GHz	12	15	-	dB
Return Loss 1	RL1	$\mathrm{f}=0.01$ to 1.0 GHz	13	18	-	dB
Return Loss 2	RL2	$\mathrm{f}=1.0$ to 2.5 GHz	8	12	-	dB
0.1 dB Loss Compression Input Power ${ }^{\text {Note } 1}$	Pin (0.1 dB)	$\mathrm{f}=1.0 \mathrm{GHz}$	+10	+15	-	dBm
1 dB Loss Compression Input Power ${ }^{\text {Note } 2}$	Pin (1 dB)	$\mathrm{f}=1.0 \mathrm{GHz}$	-	+20	-	dBm
Supply Current	IdD	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {cont }}=2.8 \mathrm{~V}$, RF off	-	0.01	1	$\mu \mathrm{A}$
Switch Control Current	Icont	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {cont }}=2.8 \mathrm{~V}$, RF off	-	0.01	1	$\mu \mathrm{A}$
Switch Control Speed	tsw	$\mathrm{f}=1.0 \mathrm{GHz}$	-	0.4	1	$\mu \mathrm{S}$

Notes 1. Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
2. $\operatorname{Pin}(1 \mathrm{~dB})$ is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

Caution DC blocking capacitors are necessary. Please do not supply any DC bias to the terminals (INPUT1, INPUT2, OUTPUT1, OUTPUT2).
The value of DC blocking capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system.

EVALUATION CIRCUIT

Caution This IC has pull down resistances inside between each RF line and GND line, which bias each RF pin internally to GND, then the IC cannot be used for DC switching.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

USING THE EVALUATION BOARD

Symbol	Values
C1	10000 pF
C2	1000 pF

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {cont }}(\mathrm{H})=2.8 \mathrm{~V}, \mathrm{~V}_{\text {cont }}(\mathrm{L})=0 \mathrm{~V}, \mathrm{P}_{\text {in }}=0 \mathrm{dBm}\right.$, $Z_{0}=50 \Omega$, DC blocking capacitors $=10000 \mathrm{pF}$, unless otherwise specified)

Remark The graphs indicate nominal characteristics.

INPUT1, 2-OUTPUT1, 2
INSERTION LOSS vs. FREQUENCY

INPUT1, 2-OUTPUT1, 2
RETURN LOSS vs. FREQUENCY

INSERTION LOSS vs. INPUT POWER

Remark The graphs indicate nominal characteristics.

MOUNTING PAD AND SOLDER MASK LAYOUT DIMENSIONS

6-PIN PLASTIC TSON (UNIT: mm)

MOUNTING PAD

SOLDER MASK

Solder thickness : 0.08 mm

Remark The mounting pad and solder mask layouts in this document are for reference only.
When designing PCB, please consider workability of mounting, solder joint reliability, prevention of solder bridge and so on, in order to optimize the design.

PACKAGE DIMENSIONS

6-PIN PLASTIC TSON (T6N) (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method		Soldering Conditions	Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	$: 260^{\circ} \mathrm{C}$ or below	IR260
	Time at peak temperature	$: 10$ seconds or less	
	Time at temperature of $220^{\circ} \mathrm{C}$ or higher	$: 60$ seconds or less	
	Preheating time at 120 to $180^{\circ} \mathrm{C}$	$: 120 \pm 30$ seconds	
	Maximum number of reflow processes	$: 3$ times	
	Maximum chlorine content of rosin flux (\% mass)	$: 0.2 \%(\mathrm{Wt}$.) or below	
Partial Heating	Peak temperature (terminal temperature)	$: 350^{\circ} \mathrm{C}$ or below	HS350
	Soldering time (per side of device)	$: 3$ seconds or less	
	Maximum chlorine content of rosin flux (\% mass)	$: 0.2 \%(\mathrm{Wt}$.) or below	

Caution Do not use different soldering methods together (except for partial heating).

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

