

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET

GaAs INTEGRATED CIRCUIT

μ PG2009TB

L-BAND HIGH POWER SPDT SWITCH

DESCRIPTION

The μ PG2009TB is an L-band SPDT (Single Pole Double Throw) GaAs FET switch which was developed for digital cellular or cordless telephone application. The device can operate from 500 MHz to 2.5 GHz, having the low insertion loss and high isolation by 2.8 V control voltage.

FEATURES

• Low insertion loss : Lins = 0.25 dB TYP. @ $V_{cont1/2}$ = 2.8 V/0 V, f = 1.0 GHz

LINS = 0.30 dB TYP. @ $V_{cont1/2} = 2.8 \text{ V/0 V}$, f = 2.0 GHz

• High isolation : ISL = 28 dB TYP. @ $V_{cont1/2}$ = 2.8 V/0 V, f = 2.0 GHz

High power
 Pin (0.1dB) = 34 dBm TYP. @ Vcont1/2 = 2.8 V/0 V, f = 1.0 GHz

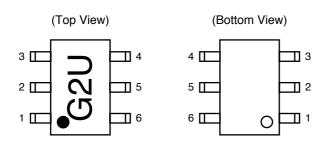
• 6-pin super minimold package (2.0 × 1.25 × 0.9 mm)

APPLICATION

- · L-band digital cellular or cordless telephone
- Buletooth[™], W-LAN and WLL applications

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μPG2009TB-E3	6-pin super minimold	G2U	Embossed tape 8 mm wide Pin 1, 2, 3 face the perforation side of the tape Qty 3 kpcs/reel


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: μ PG2009TB-A

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

★ PIN CONNECTIONS

Pin No.	Pin Name	
1	OUT1	
2	GND	
3	OUT2	
4	V _{cont2}	
5	IN	
6	V _{cont1}	

ABSOLUTE MAXIMUM RATINGS (Ta = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Control Voltage 1, 2	Vcont1, 2	-6.0 to +6.0 Note	V
Input Power	Pin	+36	dBm
Total Power Dissipation	P _{tot}	0.15	W
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Note $|V_{cont1}-V_{cont2}| \le 6.0 \text{ V}$

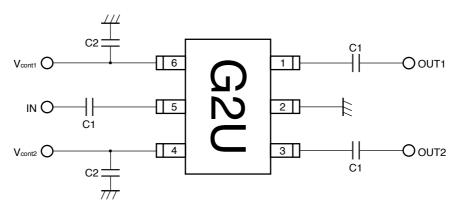
RECOMMENDED OPERATING RENGE ($T_A = +25$ °C)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Control Voltage (High)	V _{cont(H)}	+2.7	+2.8	+3.0	V
Control Voltage (Low)	V _{cont(L)}	-0.2	0	+0.2	V

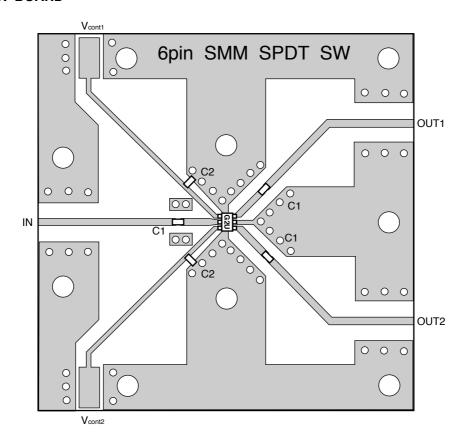
ELECTRICAL CHARACTERISTICS

(TA = +25°C, V_{cont1} = 2.8 V, V_{cont2} = 0 V or V_{cont1} = 0 V, V_{cont2} = 2.8 V, Z₀ = 50 Ω , Off chip DC blocking capacitors value; 56 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
sertion Loss L _{INS} f = 0.5 to 1.0 GHz		f = 0.5 to 1.0 GHz	-	0.25	0.45	dB
		f = 2.0 GHz	-	0.30	0.50	dB
		f = 2.5 GHz	-	0.40	-	dB
Isolation	ISL	f = 0.5 to 2.0 GHz	24	28	-	dB
		f = 2.5 GHz	-	25	-	dB
Input Return Loss	RLin	f = 0.5 to 2.5 GHz	15	20	-	dB
Output Return Loss	RLout	f = 0.5 to 2.5 GHz	15	20	-	dB
Input Power at 0.1 dB	Pin(0.1 dB)	f = 1.0 GHz,	32.5	34	_	dBm
Compression Point Note		V _{cont} = 2.8 V/0 V				
2nd Harmonics	2f0	f = 1.0 GHz, V _{cont} = 2.8 V/0 V,	65	75	-	dBc
		Pin = 30.5 dBm				
3rd Harmonics	3f0	f = 1.0 GHz, Vcont = 2.8 V/0 V,	65	75	-	dBc
		Pin = 30.5 dBm				
Switching Speed	tsw		-	150	-	ns
Control Current	Icont	V _{cont} = 2.8 V/0 V, RF Non		1	50	μΑ


Note P_{in(0.1 dB)} are measured the input power level when the insertion loss increase more 0.1 than that of linear range. All other characteristics are measured in linear range.

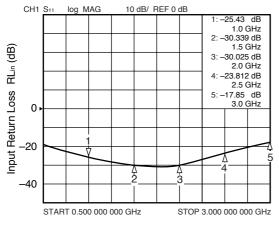
Caution When the μ PG2009TB is used it is necessary to use DC blocking capacitors for No.1 (OUT1), No.3 (OUT2) and No.5 (IN). The value of DC blocking capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system.


The range of recommended DC blocking capacitor value is less than 100 pF.

EVALUATION CIRCUIT

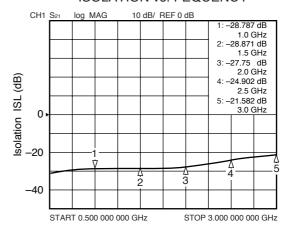
 $V_{cont1} = 2.8 \text{ V}$, $V_{cont2} = 0 \text{ V}$ or $V_{cont2} = 0 \text{ V}$, $V_{cont1} = 2.8 \text{ V}$, off chip DC blocking capacitors value C1 = 56 pF, C2 = 1 000 pF (Bypass), using the standard evaluation board.

EVALUATION BOARD



TRUTH TABLE

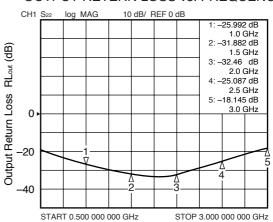
V _{cont1}	V _{cont2}	IN-OUT1	IN-OUT2	
Low	High	OFF	ON	
High	Low	ON	OFF	


TYPICAL CHARACTERISTICS (TA = +25°C, $V_{cont1/2}$ = 2.8 V/0 V, P_{in} = 0 dBm, OUT2 side is 50 Ω termination, unless otherwise specified)

INPUT RETURN LOSS vs. FREQUENCY

Frequency f(GHz)

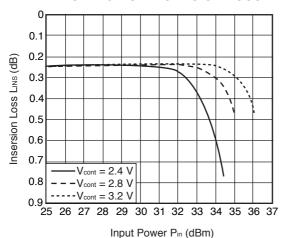
ISOLATION vs. FEQUENCY


Frequency f (GHz)

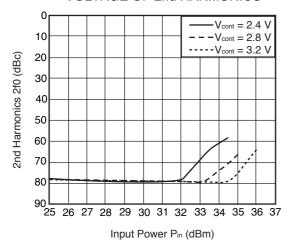
INSERTION LOSS vs. FREQUENCY

Frequency f(GHz)

OUTPUT RETERN LOSS vs. FREQUENCY

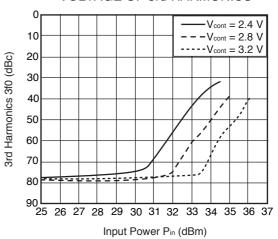

Frequency f(GHz)

Caution These characteristics values include the losses of the evaluation board.

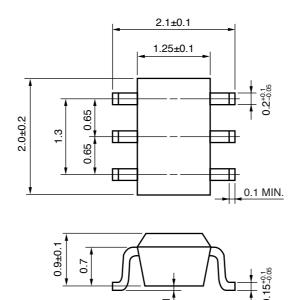

Remark The graphs indicate nominal characteristics.

TYPICAL CHARACTERISTICS (f = 2 GHz, OUT2 side is 50Ω termination, unless otherwise specified)

RELATION BETWEEN CONTROL VOLTAGE OF INSERSION LOSS



RELATION BETWEEN CONTROL VOLTAGE OF 2nd HARMONICS


Remark The graphs indicate nominal characteristics.

RELATION BETWEEN CONTROL VOLTAGE OF 3rd HARMONICS

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	H\$350

Caution Do not use different soldering methods together (except for partial heating).

SAFETY INFORMATION ON THIS PRODUCT

A	-43	- 1	
(:ai	ITI	n	n

GaAs Products

The product contains gallium arsenide, GaAs.

GaAs vapor and powder are hazardous to human health if inhaled or ingested.

- Do not destroy or burn the product.
- · Do not cut or cleave off any part of the product.
- Do not crush or chemically dissolve the product.
- Do not put the product in the mouth.

Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.