

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NEC's GaAs MMIC DPDT SWITCHES FOR 5 GHz BAND WIRELESS LAN

UPG2024TQ

FEATURES

OPERATING FREQUENCY:

f = 4.8 to 5.85 GHz

· LOW INSERTION LOSS:

Lins = 1.2 dB TYP. @ f = 4.8 to 5.85 GHz

HANDLING POWER:

 $P_{in (0.1 dB)} = +32 dBm TYP. @ f = 4.8 to 5.85 GHz$

CONTROL VOLTAGE:

 $V_{cont} = +2.8 \text{ V/O V TYP}.$

· HIGH ISOLATION:

ISL (between TX and RX) = 30 dB TYP. @ f = 5.2 GHz ISL (between ANT1/ANT2 and RX/TX) = 25 dB TYP. @ f = 5.2 GHz

· INPUT/OUTPUT RETURN LOSS:

RLin/RLout = 20 dB TYP. @ f= 4.8 to 5.85 GHz

· SWITCHING SPEED:

tsw = 20 ns TYP. @ trise/tfall (10/90% RF)

· HIGH-DENSITY SURFACE MOUNTING:

10-pin plastic TSON package (2.30 × 2.55 × 0.60 mm)

· Pb FREE

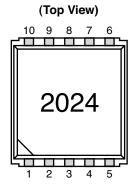
DESCRIPTION

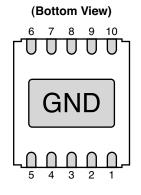
NEC's UPG2024TQ is a GaAs MMIC DPDT switch for 5 GHz band wireless LAN. Low insertion loss and high handling power contribute to user's system design.

APPLICATIONS

• 5 GHz Band Wireless LAN (IEEE802.11a)

ORDERING INFORMATION


PART NUMBER	ORDER NUMBER	PACKAGE	MARKING	SUPPLYING FORM
UPG2024TQ-E1-A	UPG2024TQ-E1-A	10-pin plastic TSON	2024	Embossed tape 8 mm wide
		(Pb-Free)		Pin 5, 6 face the perforation side of the tape
				Qty 3 kpcs/reel


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: UPG2024TQ

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

PIN CONNECTIONS

PIN NO.	PIN NAME
1	TX
2	V _{cont1}
3	V _{cont2}
4	GND
5	RX
6	ANT1
7	V _{cont3}
8	V _{cont4}
9	GND
10	ANT2

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Control Voltage	Vcont	-6.0 to +6.0 Note 1	V
Input Power	Pin	+36	dBm
Total Power Dissipation	Ptot	0.15 Note 2	W
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-65 to +150	°C

Notes 1. Within the condition of I $V_{cont1}-V_{cont2}I \le 6.0 V$

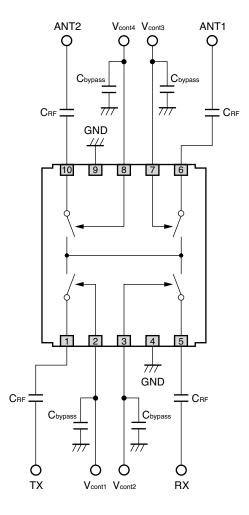
2. Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB, $T_A = +85^{\circ}C$

RECOMMENDED OPERATING RANGE (TA = +25°C)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Control Voltage (High)	V _{cont (H)}	2.7	2.8	3.3	٧
Control Voltage (Low)	Vcont (L)	-0.2	0	+0.2	V
Operating Frequency	f	4.8	_	5.85	GHz
Operating Ambient Temperature	TA	-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcont = 2.8 V/0 V, Zo = 50 Ω , DC block capacitor = 2 pF, each port, on the below TRUTH TABLE, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Insertion Loss	Lins	f = 4.9 GHz	_	1.2	1.5	dB
		f = 5.2 GHz	-	1.2	1.5	
		f = 5.8 GHz	-	1.5	1.7	
Isolation	ISL	f = 4.9 GHz	20	25	-	dB
(Between TX and RX)		f = 5.2 GHz	25	30	-	
		f = 5.8 GHz	20	25	-	
Input Return Loss	RLin	f = 4.9 GHz	10	20	-	dB
		f = 5.2 GHz	10	20	_	
		f = 5.8 GHz	7	20	-	
Output Return Loss	RLout	f = 4.9 GHz	10	20	-	dB
		f = 5.2 GHz	10	20	-	
		f = 5.8 GHz	7	20	-	
0.1 dB Gain Compression	Pin (0.1 dB)	f = 4.9 GHz	30	33	-	dBm
Input Power		f = 5.2 GHz	30	32	_	
		f = 5.8 GHz	30	32	-	
Switching Speed	tsw	trise/trall (10/90% RF)	_	20	_	ns
Control Current	Icont		_	0.5	-	μА
Input 3rd Order Intercept Point	IIP ₃		_	50	-	dBm

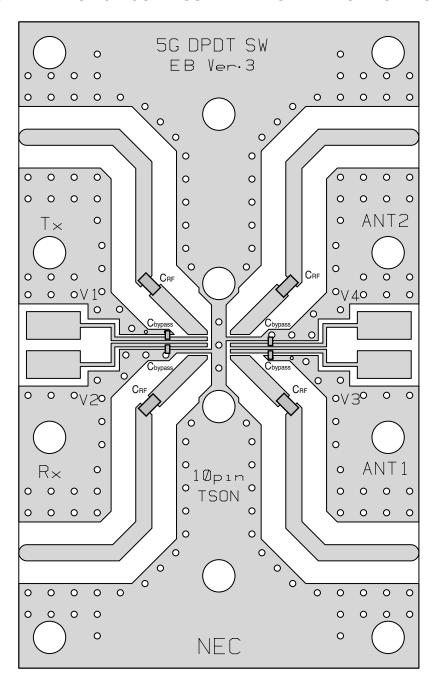
STANDARD CHARACTERISTICS FOR REFERENCE

(TA = +25°C, Vcont = 2.8 V/0 V, Zo = 50 Ω , DC block capacitor = 2 pF, each port, on the below TRUTH TABLE, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Isolation	ISL	f = 4.9 GHz	-	22	-	dB
(Between ANT1/ANT2 and RX/TX)		f = 5.2 GHz	-	25	-	
		f = 5.8 GHz	-	21	-	

TEST CIRCUIT

Remark CRF: 2 pF


Cbypass: 1 000 pF

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

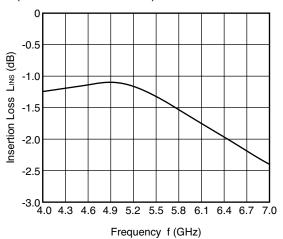
TRUTH TABLE

V _{cont1}	V _{cont2}	V _{cont3}	V _{cont4}	PASS
Low	High	High	Low	ANT1-RX
High	Low	Low	High	ANT2-TX
High	Low	High	Low	ANT1-TX
Low	High	Low	High	ANT2-RX

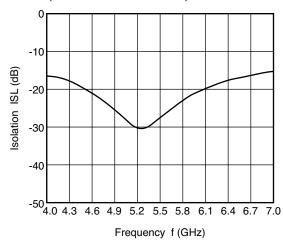
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

USING THE NEC EVALUATION BOARD

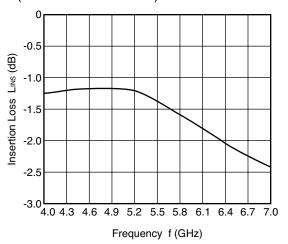
SYMBOL	FORM	RATING	PART NUMBER	MANUFACTURER
Crf	Chip Capacitor	2 pF	GRM36CK020C50PB	muRata
Cbypass	Chip Capacitor	1 000 pF	GRP033B11C102KD01E	muRata
_	PC Terminal	-	A2-2PA-2.54DSA	Hirose
-	RF Connector	-	142-0721-821	Johnson
_	PWB	-	RO4003 (t = 0.51 mm)	Rogers


STANDARD CHARACTERISTICS FOR REFERENCE

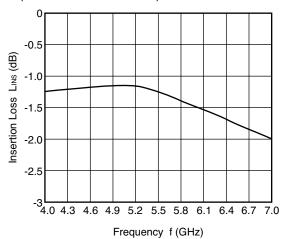
(TA = +25°C, Vcont = 2.8 V/0 V, Zo = 50 Ω, DC block capacitor = 2 pF, using test fixture, unless otherwise specified)


TX-ANT1 INSERTION LOSS vs. FREQUENCY (When TX-ANT1 is ON)

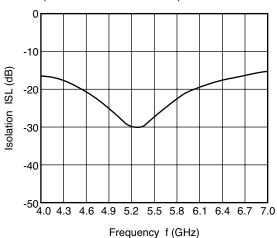
TX-ANT2 INSERTION LOSS vs. FREQUENCY (When TX-ANT2 is ON)

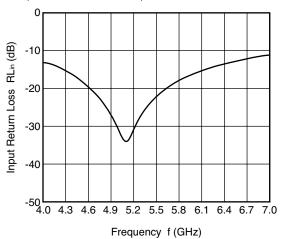


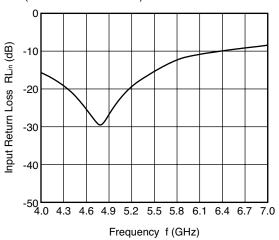
RX-TX ISOLATION vs. FREQUENCY (When ANT2-RX is ON)

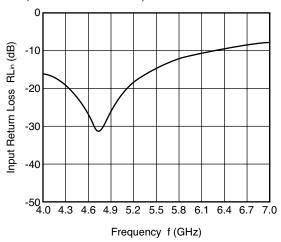


Remark The graphs indicate nominal characteristics.

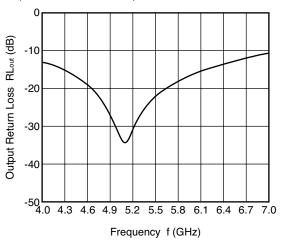

ANT1-RX INSERTION LOSS vs. FREQUENCY (When ANT1-RX is ON)


ANT2-RX INSERTION LOSS vs. FREQUENCY (When ANT2-RX is ON)

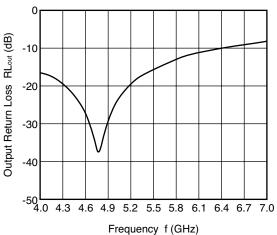

TX-RX ISOLATION vs. FREQUENCY (When TX-ANT1 is ON)


TX-ANT1 INPUT RETURN LOSS vs. FREQUENCY (When TX-ANT1 is ON)

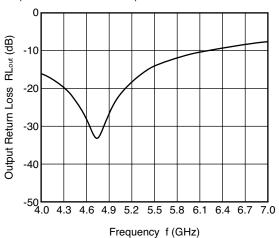
TX-ANT2 INPUT RETURN LOSS vs. FREQUENCY (When TX-ANT2 is ON)

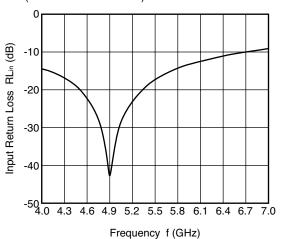


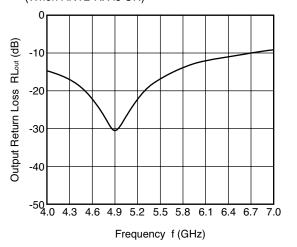
ANT1-RX INPUT RETURN LOSS vs. FREQUENCY (When ANT1-RX is ON)

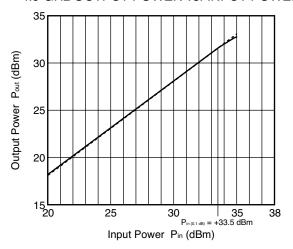


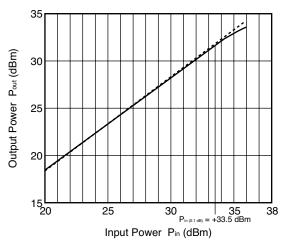
Remark The graphs indicate nominal characteristics.

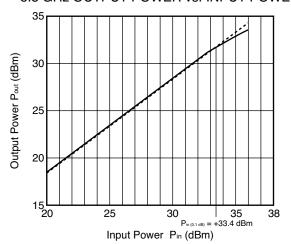

TX-ANT1 OUTPUT RETURN LOSS vs. FREQUENCY (When TX-ANT1 is ON)


TX-ANT2 OUTPUT RETURN LOSS vs. FREQUENCY (When TX-ANT2 is ON)

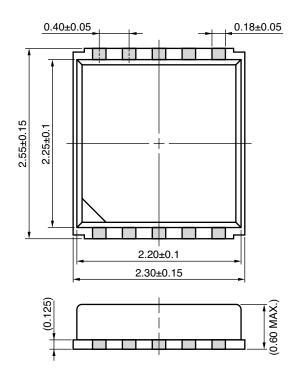

ANT1-RX OUTPUT RETURN LOSS vs. FREQUENCY (When ANT1-RX is ON)

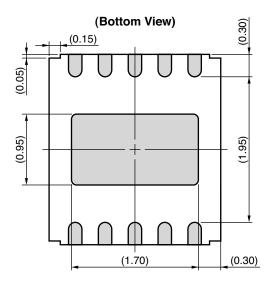

ANT2-RX INPUT RETURN LOSS vs. FREQUENCY (When ANT2-RX is ON)


ANT2-RX OUTPUT RETURN LOSS vs. FREQUENCY (When ANT2-RX is ON)


4.9 GHz OUTPUT POWER vs. INPUT POWER

5.2 GHz OUTPUT POWER vs. INPUT POWER


5.8 GHz OUTPUT POWER vs. INPUT POWER



Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

10-PIN PLASTIC TSON (UNIT:mm)

Remark (): Reference value

UPG2024TQ

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

SOLDERING METHOD	SOLDERING CONDITIONS		CONDITION SYMBOL
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Wave Soldering	Peak temperature (molten solder temperature)	: 260°C or below	WS260
	Time at peak temperature	: 10 seconds or less	
	Preheating temperature (package surface temperature)	: 120°C or below	
	Maximum number of flow processes	: 1 time	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	

Caution Do not use different soldering methods together (except for partial heating).

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

California Eastern Laboratories, Your source for NEC RF, Microwave, Optoelectronic, and Fiber Optic Semiconductor Devices. 4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • FAX (408) 988-0279 • www.cel.com DATA SUBJECT TO CHANGE WITHOUT NOTICE

A Business Partner of NEC Compound Ser

05/04/2005

Facsimile: (408) 988-0279

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices		
Lead (Pb)	< 1000 PPM	-A -AZ Not Detected (*)		
Mercury	< 1000 PPM	Not Detected		
Cadmium	< 100 PPM	Not Detected		
Hexavalent Chromium	< 1000 PPM	Not Detected		
PBB	< 1000 PPM	Not Detected		
PBDE	< 1000 PPM	Not Detected		

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.