imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

GaAs INTEGRATED CIRCUIT $\mu PG2214TK$

L, S-BAND SPDT SWITCH

DESCRIPTION

The μ PG2214TK is a GaAs MMIC for L, S-band SPDT (Single Pole Double Throw) switch which was developed for mobile phone and another L, S-band application.

This device can operate 2 control switching by control voltage 1.8 to 5.3 V. This device can operate frequency from 0.05 to 3.0 GHz, having the low insertion loss and high isolation.

This device is housed in a 6-pin lead-less minimold (1511) package. And this package is able to high-density surface mounting.

FEATURES

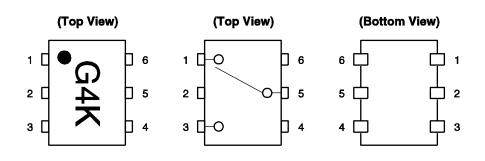
•	Switch control voltage	: V _{cont (H)} = 1.8 to 5.3 V (3.0 V TYP.)
		: $V_{\text{cont (L)}} = -0.2 \text{ to } +0.2 \text{ V} (0 \text{ V TYP.})$
•	Low insertion loss	: Lins1 = 0.25 dB TYP. @ f = 0.05 to 0.5 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: Lins2 = 0.25 dB TYP. @ f = 0.5 to 1.0 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: Lins3 = 0.30 dB TYP. @ f = 1.0 to 2.0 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: Lins4 = 0.35 dB TYP. @ f = 2.0 to 2.5 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: Lins5 = 0.35 dB TYP. @ f = 2.5 to 3.0 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
•	High isolation	: ISL1 = 32 dB TYP. @ f = 0.05 to 0.5 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: ISL2 = 28 dB TYP. @ f = 0.5 to 1.0 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: ISL3 = 27 dB TYP. @ f = 1.0 to 2.0 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: ISL4 = 26 dB TYP. @ f = 2.0 to 2.5 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: ISL5 = 24 dB TYP. @ f = 2.5 to 3.0 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
•	Handling power	: Pin (1 dB) = +27.0 dBm TYP. @ f = 0.5 to 3.0 GHz, $V_{cont (H)} = 3.0 V$, $V_{cont (L)} = 0 V$
		: Pin (1 dB) = +20.0 dBm TYP. @ f = 0.5 to 3.0 GHz, $V_{cont (H)} = 1.8 V$, $V_{cont (L)} = 0 V$
	High-density surface mounting	$: 6$ -pin lead-less minimold package (1.5 \times 1.1 \times 0.55 mm)

- High-density surface mounting : 6-pin lead-less minimold package ($1.5 \times 1.1 \times 0.55$ mm)

APPLICATIONS

- · L, S-band digital cellular or cordless telephone
- W-LAN, WLL and Bluetooth[™] etc.

ORDERING INFORMATION


Part Number	Package	Marking	Supplying Form
μPG2214TK-E2	6-pin lead-less minimold (1511)	G4K	 Embossed tape 8 mm wide Pin 1, 6 face the perforation side of the tape Qty 5 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μ PG2214TK-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	OUTPUT1
2	GND
3	OUTPUT2
4	Vcont2
5	INPUT
6	Vcont1

TRUTH TABLE

Vcont1	Vcont2	INPUT-OUTPUT1	INPUT-OUTPUT2
Low	High	ON	OFF
High	Low	OFF	ON

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Switch Control Voltage	Vcont	+6.0 ^{Note}	V
Input Power	Pin	+30	dBm
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	Tstg	–55 to +150	°C

Note $|V_{cont1} - V_{cont2}| \le 6.0 V$

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Switch Control Voltage (H)	Vcont (H)	1.8	3.0	5.3	V
Switch Control Voltage (L)	Vcont (L)	-0.2	0	0.2	V

ELECTRICAL CHARACTERISTICS

(TA = +25°C, V_{cont (H)} = 3.0 V, V_{cont (L)} = 0 V, DC cut capacitors = 100 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 0.05 to 0.5 GHz ^{Note 1}	-	0.25	0.45	dB
Insertion Loss 2	Lins2	f = 0.5 to 1.0 GHz	-	0.25	0.45	dB
Insertion Loss 3	Lins3	f = 1.0 to 2.0 GHz	-	0.30	0.50	dB
Insertion Loss 4	Lins4	f = 2.0 to 2.5 GHz	-	0.35	0.55	dB
Insertion Loss 5	Lins5	f = 2.5 to 3.0 GHz	-	0.35	0.60	dB
Isolation 1	ISL1	f = 0.05 to 0.5 GHz ^{Note 1}	29	32	-	dB
Isolation 2	ISL2	f = 0.5 to 1.0 GHz	25	28	-	dB
Isolation 3	ISL3	f = 1.0 to 2.0 GHz	24	27	-	dB
Isolation 4	ISL4	f = 2.0 to 2.5 GHz	23	26	-	dB
Isolation 5	ISL5	f = 2.5 to 3.0 GHz	21	24	-	dB
Input Return Loss 1	RL in1	f = 0.05 to 0.5 GHz ^{Note 1}	15	20	-	dB
Input Return Loss 2	RLin2	f = 0.5 to 3.0 GHz	15	20	-	dB
Output Return Loss 1	RLout1	f = 0.05 to 0.5 GHz ^{Note 1}	15	20	-	dB
Output Return Loss 2	RLout2	f = 0.5 to 3.0 GHz	15	20	-	dB
0.1 dB Loss Compression	Pin (0.1 dB)	f = 2.0/2.5 GHz	+21.0	+23.0	-	dBm
Input Power Note 2		f = 0.5 to 3.0 GHz	-	+23.0	-	dBm
1 dB Loss Compression	Pin (1 dB)	f = 0.5 to 3.0 GHz	-	+27.0	-	dBm
Input Power Note 3						
2nd Harmonics	2fo	f = 2.0 GHz, Pin = +15 dBm	-	-55	-47	dBc
		f = 2.5 GHz, Pin = +15 dBm	-	-55	-47	dBc
3rd Harmonics	3fo	f = 2.0 GHz, Pin = +15 dBm	-	-55	-47	dBc
		f = 2.5 GHz, Pin = +15 dBm	-	-55	-47	dBc
Intermodulation Intercept Point	IIP3	f = 0.5 to 3.0 GHz, 2 tone, P _{in} = +16 dBm, 5 MHz spicing	-	+58	_	dBm
Switch Control Current	Icont		-	4	20	μA
Switch Control Speed	tsw	50% CTL to 90/10% RF	-	20	200	ns

Notes 1. DC cut capacitors = 1 000 pF at f = 0.05 to 0.5 GHz

- **2.** P_{in (0.1 dB)} is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
- **3.** Pin (1 dB) is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

ELECTRICAL CHARACTERISTICS

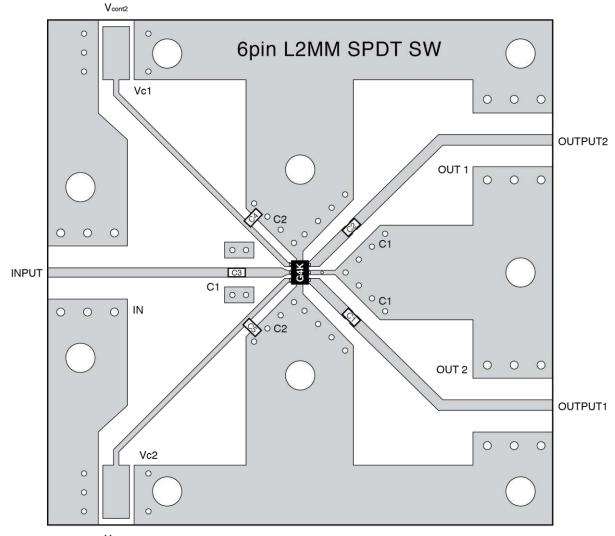
(TA = +25°C, V_{cont (H)} = 1.8 V, V_{cont (L)} = 0 V, DC cut capacitors = 100 pF, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 6	Lins6	f = 0.05 to 0.5 GHz ^{Note 1}	-	0.25	0.50	dB
Insertion Loss 7	Lins7	f = 0.5 to 1.0 GHz	-	0.25	0.50	dB
Insertion Loss 8	Lins8	f = 1.0 to 2.0 GHz	-	0.30	0.55	dB
Insertion Loss 9	Lins9	f = 2.0 to 2.5 GHz	-	0.35	0.60	dB
Insertion Loss 10	Lins10	f = 2.5 to 3.0 GHz	-	0.35	0.65	dB
Isolation 6	ISL6	f = 0.05 to 0.5 GHz ^{Note 1}	27	30	-	dB
Isolation 7	ISL7	f = 0.5 to 2.0 GHz	23	27	-	dB
Isolation 8	ISL8	f = 2.0 to 2.5 GHz	21	25	-	dB
Isolation 9	ISL9	f = 2.5 to 3.0 GHz	20	24	-	dB
Input Return Loss 3	RLin3	f = 0.05 to 3.0 GHz ^{Note 1}	15	20	-	dB
Output Return Loss 3	RL _{out3}	f = 0.05 to 3.0 GHz ^{Note 1}	15	20	-	dB
0.1 dB Loss Compression	Pin (0.1 dB)	f = 2.0/2.5 GHz	+14.0	+17.0	-	dBm
Input Power ^{Note 2}		f = 0.5 to 3.0 GHz	-	+17.0	-	dBm
1 dB Loss Compression Input Power ^{Note 3}	Pin (1 dB)	f = 0.5 to 3.0 GHz	_	+20.0	-	dBm
Switch Control Current	Icont		-	4	20	μA
Switch Control Speed	tsw	50% CTL to 90/10% RF	-	20	200	ns

Notes 1. DC cut capacitors = 1 000 pF at f = 0.05 to 0.5 GHz

- 2. Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.
- **3.** P_{in (1 dB)} is measured the input power level when the insertion loss increases more 1 dB than that of linear range.

Caution This device is used it is necessary to use DC cut capacitors.

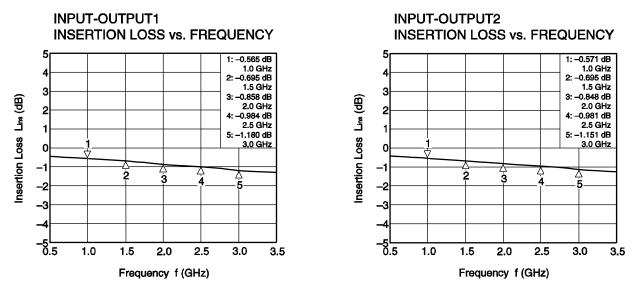

The value of DC cut capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system. The range of recommended DC cut capacitor value is less than 100 pF.

EVALUATION CIRCUIT

Note C0 : 0.05 to 0.5 GHz 1 000 pF : 0.5 to 3.0 GHz 100 pF

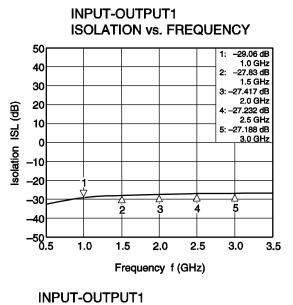
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

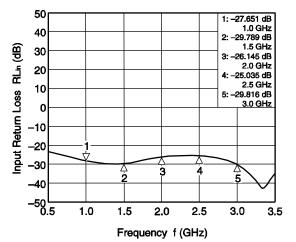

Vcont1

USING THE EVALUATION BOARD

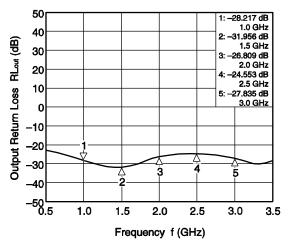
Symbol	Values
C1, C2, C3	100 pF
C4, C5	1 000 pF

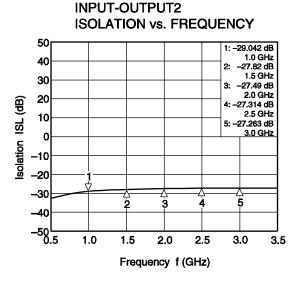

★ TYPICAL CHARACTERISTICS

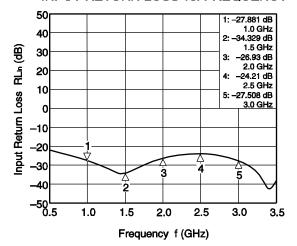
(TA = +25°C, V_{cont} (H) = 3.0 V, V_{cont} (L) = 0 V, DC cut capacitors = 100 pF, unless otherwise specified)

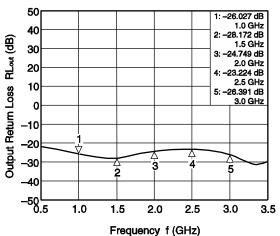


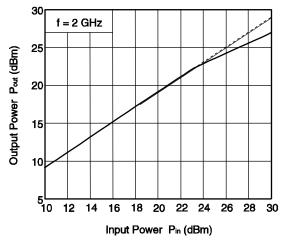
Remark The graphs indicate nominal characteristics.


Caution These characteristics values include the losses of the evaluation board.

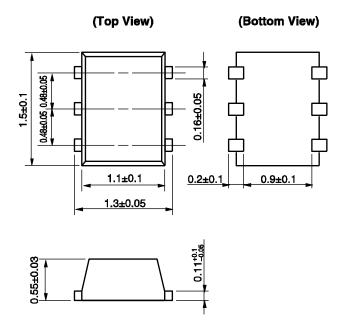

INPUT RETURN LOSS vs. FREQUENCY


INPUT-OUTPUT1 OUTPUT RETURN LOSS vs. FREQUENCY


Remark The graphs indicate nominal characteristics.


INPUT-OUTPUT2 INPUT RETURN LOSS vs. FREQUENCY

INPUT-OUTPUT2 OUTPUT RETURN LOSS vs. FREQUENCY



Remark The graph indicate nominal characteristics.

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511) (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Caution GaAs Products	This product uses gallium arsenide (GaAs). GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.
	 Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
	 Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
	Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
	Do not burn, destroy, cut, crush, or chemically dissolve the product.
	Do not lick the product or in any way allow it to enter the mouth.