: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

μ PG2430T6Z

GaAs Integrated Circuit
SP3T Switch for Bluetooth ${ }^{\circledR}$ and $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g}$

DESCRIPTION

The $\mu \mathrm{PG} 2430 \mathrm{~T} 6 \mathrm{Z}$ is a GaAs MMIC SP3T switch which was developed for Bluetooth, wireless LAN. This device can operate at frequencies from 0.5 to 6.0 GHz , with low insertion loss and high isolation.
This device is housed in a 8-pin plastic TSON (Thin Small Out-line Non-leaded) package and is suitable for highdensity surface mounting.

FEATURES

- Switch Control voltage
$: \mathrm{V}_{\text {cont }(\mathrm{H})}=3.0 \mathrm{~V}$ TYP., $\mathrm{V}_{\text {cont }(\mathrm{L})}=0 \mathrm{~V}$ TYP.
- Low insertion loss
$: \mathrm{L}_{\text {ins }}=0.55 \mathrm{~dB}$ TYP. @ $\mathrm{f}=2.5 \mathrm{GHz}$
: $\mathrm{L}_{\text {ins }}=0.65 \mathrm{~dB}$ TYP. @ $\mathrm{f}=6.0 \mathrm{GHz}$
- High isolation
: ISL = 28 dB TYP. @ $\mathrm{f}=2.5 \mathrm{GHz}$
$:$ ISL $=25 \mathrm{~dB}$ TYP. @ $\mathrm{f}=6.0 \mathrm{GHz}$
- Handling power
$: \mathrm{P}_{\text {in }(0.1 \mathrm{~dB})}=+28.0 \mathrm{dBm}$ TYP. @ $\mathrm{V}_{\text {cont }(\mathrm{H})}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {cont }(\mathrm{L})}=0 \mathrm{~V}$
- High-density surface mounting : 8-pin plastic TSON package ($1.5 \times 1.5 \times 0.37 \mathrm{~mm}$)

APPLICATIONS

- Bluetooth and IEEE802.11a/b/g etc.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μ PG2430T6Z-E2	μ PG2430T6Z-E2-A	8-pin plastic	G6L	\bullet Embossed tape 8 mm wide
		TSON		• Pin 1, 8 face the perforation side of the tape
	(Pb-Free)		Qty 3 kpcs/reel	

Remark To order evaluation samples, please contact your nearby sales office.
Part number for sample order: μ PG2430T6Z-A

CAUTION

Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM
(Top View)

TRUTH TABLE

$\mathbf{V}_{\text {cont }} \mathbf{1}$	$\mathbf{V}_{\text {cont }} \mathbf{2}$	$\mathbf{V}_{\text {cont }} \mathbf{3}$	RFC-RF1	RFC-RF2	RFC-RF3
High	Low	Low	ON	OFF	OFF
Low	High	Low	OFF	ON	OFF
Low	Low	High	OFF	OFF	ON

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathbf{C}$, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Switch Control Voltage	$\mathrm{V}_{\text {cont }}$	$+6.0{ }^{\text {Note }}$	V
Input Power $\left(\mathrm{V}_{\text {cont }(\mathrm{H})}=3.0 \mathrm{~V}\right)$	$\mathrm{P}_{\text {in }}$	+32	dBm
Operating Ambient Temperature	T_{A}	-45 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Note: $\left|\mathrm{V}_{\text {cont (H) }}-\mathrm{V}_{\text {cont }(L)}\right| \leq 6.0 \mathrm{~V}$

RECOMMENDED OPERATING RANGE ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	f	0.5	-	6.0	GHz
Switch Control Voltage (H)	$\mathrm{V}_{\text {cont }(\mathrm{H})}$	1.6	3.0	3.6	V
Switch Control Voltage (L)	$\mathrm{V}_{\text {cont }(\mathrm{L})}$	-0.2	0	0.2	V
Control Voltage Difference (H)	$\Delta \mathrm{V}_{\text {cont }(\mathrm{H})}$ Note 1	-0.1	0	0.1	V
Control Voltage Difference (L)	$\Delta \mathrm{V}_{\text {cont }(\mathrm{L}}$ Note 2	-0.1	0	0.1	V

Notes: 1. $\Delta \mathrm{V}_{\text {cont }(H)}$ is a difference between the maximum and the minimum control voltages among $\mathrm{V}_{\text {cont }}{ }^{1}(H), \mathrm{V}_{\text {cont }}{ }_{(H)}$ and $\mathrm{V}_{\text {cont }} 3_{\text {(H) }}$.
2. $\Delta \mathrm{V}_{\text {cont (L) }}$ is a difference between the maximum and the minimum control voltages among $\mathrm{V}_{\text {cont }}{ }^{1}(\mathrm{~L}), \mathrm{V}_{\text {cont }}{ }^{2}$ (L) and $\mathrm{V}_{\text {cont }} 3^{(\mathrm{L})}$.

ELECTRICAL CHARACTERISTICS 1

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {cont }(\mathrm{H})}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {cont }(\mathrm{L})}=0 \mathrm{~V}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right.$, DC blocking capacitors $=8 \mathrm{pF}$, unless otherwise specified)

Parameter	Symbol	Path	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	Lins	$\begin{aligned} & \text { RFC to } \\ & \text { RF1, } 2,3 \end{aligned}$	$\mathrm{f}=0.5$ to $1.0 \mathrm{GHz}{ }^{\text {Note } 1}$	-	0.45	0.60	dB
			$\mathrm{f}=1.0$ to $2.0 \mathrm{GHz}{ }^{\text {Note } 1}$	-	0.45	0.60	dB
			$\mathrm{f}=2.0$ to 2.5 GHz	-	0.55	0.70	dB
			$\mathrm{f}=2.5$ to 4.9 GHz	-	0.60	0.80	dB
			$\mathrm{f}=4.9$ to 6.0 GHz	-	0.65	0.90	dB
Isolation	ISL	$\begin{aligned} & \hline \text { RFC to } \\ & \text { RF1, 2, } 3 \\ & \text { (OFF) } \end{aligned}$	$\mathrm{f}=0.5$ to $1.0 \mathrm{GHz}{ }^{\text {Note } 1}$	24	28	-	dB
			$\mathrm{f}=1.0$ to $2.0 \mathrm{GHz}{ }^{\text {Note } 1}$	24	28	-	dB
			$\mathrm{f}=2.0$ to 2.5 GHz	23	28	-	dB
			$\mathrm{f}=2.5$ to 4.9 GHz	23	28	-	dB
			$\mathrm{f}=4.9$ to 6.0 GHz	20	25	-	dB
Return Loss	RL		$\mathrm{f}=0.5$ to $1.0 \mathrm{GHz}{ }^{\text {Note } 1}$	-	23	-	dB
			$\mathrm{f}=1.0$ to $2.0 \mathrm{GHz}{ }^{\text {Note } 1}$	16	23	-	dB
			$\mathrm{f}=2.0$ to 2.5 GHz	16	23	-	dB
			$\mathrm{f}=2.5$ to 4.9 GHz	16	23	-	dB
			$\mathrm{f}=4.9$ to 6.0 GHz	10	23	-	dB
0.1 dB Loss Compression	Pin (0.1 dB)	RFC to RF1, 2, 3	$\mathrm{f}=2.5 \mathrm{GHz}$	+25.0	+28.0	-	dBm
Input Power Note 2			$\mathrm{f}=6.0 \mathrm{GHz}$	+25.0	+28.0	-	dBm
1 dB Loss Compression Input Power Note 3	$\mathrm{P}_{\text {in }(1 \mathrm{~dB})}$	$\begin{array}{\|l\|} \hline \text { RFC to } \\ \text { RF1, 2, } 3 \\ \hline \end{array}$	$\mathrm{f}=2.5 \mathrm{GHz}$	+28.0	+31.0	-	dBm
			$\mathrm{f}=6.0 \mathrm{GHz}$	+28.0	+31.0	-	dBm
Input 3rd Order Intercept Point	1 IP P		$\mathrm{f}=2.5 \mathrm{GHz}, 2 \text { tone, }$ 5 MHz spacing	-	53	-	dBm
2nd Harmonics	2 fo		$\begin{aligned} & \mathrm{f}=2.5 \mathrm{GHz}, \\ & P_{\text {in }}=+22 \mathrm{dBm} \end{aligned}$	-	75	-	dBc
3rd Harmonics	$3 \mathrm{f0}$		$\begin{aligned} & \mathrm{f}=2.5 \mathrm{GHz}, \\ & P_{\mathrm{in}}=+22 \mathrm{dBm} \end{aligned}$	-	75	-	dBc
Switch Control Current	$\mathrm{I}_{\text {cont }}$		No RF input	-	0.1	5.0	$\mu \mathrm{A}$
Switch Control Speed	tsw		$\begin{aligned} & \text { 50\% CTL to 90/10\% } \\ & \text { RF } \end{aligned}$	-	50	300	ns

Notes: 1. DC blocking capacitors $=56 \mathrm{pF}$ at $\mathrm{f}=0.5$ to 2.0 GHz
2. $P_{\text {in }(0.1 \mathrm{~dB})}$ is the measured input power level when the insertion loss increases 0.1 dB more than that of the linear range.
3. $P_{\text {in (1dB) }}$ is the measured input power level when the insertion loss increases 1 dB more than that of the linear range.

CAUTION

It is necessary to use DC blocking capacitors with this device.

ELECTRICAL CHARACTERISTICS 2
$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {cont }(\mathrm{H})}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {cont }(\mathrm{L})}=0 \mathrm{~V}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right.$, DC blocking capacitors $=8 \mathrm{pF}$, unless otherwise specified)

Parameter	Symbol	Path	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	Lins	$\begin{aligned} & \text { RFC to } \\ & \text { RF1, } 2,3 \end{aligned}$	$\mathrm{f}=0.5$ to $1.0 \mathrm{GHz}^{\text {Note } 1}$	-	0.45	0.60	dB
			$\mathrm{f}=1.0$ to $2.0 \mathrm{GHz}^{\text {Note } 1}$	-	0.45	0.60	dB
			$\mathrm{f}=2.0$ to 2.5 GHz	-	0.55	0.70	dB
			$\mathrm{f}=2.5$ to 4.9 GHz	-	0.60	0.80	dB
			$\mathrm{f}=4.9$ to 6.0 GHz	-	0.65	0.90	dB
Isolation	ISL	RFC to RF1, 2, 3 (OFF)	$\mathrm{f}=0.5$ to $1.0 \mathrm{GHz}{ }^{\text {Note } 1}$	24	28	-	dB
			$\mathrm{f}=1.0$ to $2.0 \mathrm{GHz}{ }^{\text {Note } 1}$	24	28	-	dB
			$\mathrm{f}=2.0$ to 2.5 GHz	23	28	-	dB
			$\mathrm{f}=2.5$ to 4.9 GHz	23	28	-	dB
			$\mathrm{f}=4.9$ to 6.0 GHz	20	25	-	dB
Return Loss	RL		$\mathrm{f}=0.5$ to $1.0 \mathrm{GHz}{ }^{\text {Note } 1}$	-	23	-	dB
			$\mathrm{f}=1.0$ to $2.0 \mathrm{GHz}{ }^{\text {Note } 1}$	16	23	-	dB
			$\mathrm{f}=2.0$ to 2.5 GHz	16	23	-	dB
			$\mathrm{f}=2.5$ to 4.9 GHz	16	23	-	dB
			$\mathrm{f}=4.9$ to 6.0 GHz	10	23	-	dB
0.1 dB Loss Compression	$\mathrm{P}_{\text {in }}(0.1 \mathrm{~dB})$	$\begin{aligned} & \text { RFC to } \\ & \text { RF1, 2, } 3 \end{aligned}$	$\mathrm{f}=2.5 \mathrm{GHz}$	+20.0	+23.0	-	dBm
Input Power ${ }^{\text {Note } 2}$			$\mathrm{f}=6.0 \mathrm{GHz}$	+19.0	+22.0	-	dBm
1 dB Loss Compression Input Power Note 3	$\mathrm{P}_{\text {in (1 dB) }}$	RFC to RF1, 2, 3	$\mathrm{f}=2.5 \mathrm{GHz}$	+24.0	+27.0	-	dBm
			$\mathrm{f}=6.0 \mathrm{GHz}$	+22.0	+25.0	-	dBm
Input 3rd Order Intercept Point	$1 \mathrm{IP} \mathrm{P}_{3}$		$\mathrm{f}=2.5 \mathrm{GHz}, 2$ tone, 5 MHz spacing	-	50	-	dBm
2nd Harmonics	2 fo		$\begin{aligned} & \mathrm{f}=2.5 \mathrm{GHz}, \\ & \mathrm{P}_{\mathrm{in}}=+17 \mathrm{dBm} \\ & \hline \end{aligned}$	-	75	-	dBc
3rd Harmonics	$3 \mathrm{f0}$		$\begin{aligned} & \hline \mathrm{f}=2.5 \mathrm{GHz}, \\ & \mathrm{P}_{\mathrm{in}}=+17 \mathrm{dBm} \\ & \hline \end{aligned}$	-	75	-	dBc
Switch Control Current	$I_{\text {cont }}$		No RF input	-	0.1	5.0	$\mu \mathrm{A}$
Switch Control Speed	tsw		$\begin{aligned} & \text { 50\% CTL to 90/10\% } \\ & \text { RF } \end{aligned}$	-	100	600	ns

Notes: 1. DC blocking capacitors $=56 \mathrm{pF}$ at $\mathrm{f}=0.5$ to 2.0 GHz
2. $\mathrm{P}_{\text {in }}(0.1 \mathrm{~dB})$ is the measured input power level when the insertion loss increases 0.1 dB more than that of the linear range.
3. $P_{\text {in (1dB) }}$ is the measured input power level when the insertion loss increases 1 dB more than that of the linear range.

CAUTION

It is necessary to use DC blocking capacitors with this device.

EVALUATION CIRCUIT

Note: It is recommended to connect the pin directly to the ground, or not to connect the pin to anything.

| Remarks $\quad \mathrm{C} 1: 0.5$ to 2.0 GHz | 56 pF |
| ---: | ---: | ---: |
| $: 2.0$ to 6.0 GHz | 8 pF |

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

APPLICATION INFORMATION

- C_{B} are DC blocking capacitors external to the device.

A value of 8 pF is sufficient for operation from 2 GHz to 6 GHz bands.
The value may be tailored to provide specific electrical responses.

- The RF ground connections should be kept as short as possible and connected to directly to a good RF ground for best performance.
- L Lesd provides a means to increase the ESD protection on a specific RF port, typically the port attached to the antenna.

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\text {cont }(\mathrm{H})}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {cont }(\mathrm{L})}=0 \mathrm{~V}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right.$, DC blocking capacitors $=8 \mathrm{pF}$, unless otherwise specified)

Remark The graphs indicate nominal characteristics.

RETURN LOSS (RF1, 2, 3) vs. FREQUENCY

RFC-RF1/RF2/RF3 INSERTION LOSS vs. SWITCH CONTROL VOLTAGE (H)

Switch Control Voltage (H) Vcont (H) (V)

RFC-RF1/RF2/RF3 ISOLATION vs. SWITCH CONTROL VOLTAGE (H)

Switch Control Voltage (H) $\mathrm{V}_{\text {cont (H) }}(\mathrm{V})$

RETURN LOSS (RF1, 2, 3) vs. FREQUENCY

RFC-RF1/RF2/RF3 ISOLATION vs. SWITCH CONTROL VOLTAGE (H)

Switch Control Voltage (H) $\mathrm{V}_{\text {cont (H) }}(\mathrm{V})$

Remark The graphs indicate nominal characteristics.

RETURN LOSS (RFC)
vs. SWITCH CONTROL VOLTAGE (H)

RETURN LOSS (RF1, 2, 3)
vs. SWITCH CONTROL VOLTAGE (H)

RFC-RF1/RF2/RF3 INSERTION LOSS, Icont vs. INPUT POWER

Remark The graphs indicate nominal characteristics.

RETURN LOSS (RFC)
vs. SWITCH CONTROL VOLTAGE (H)

RETURN LOSS (RF1, 2, 3)
vs. SWITCH CONTROL VOLTAGE (H)

RFC-RF1/RF2/RF3 INSERTION LOSS, Icont vs. INPUT POWER

Remark The graphs indicate nominal characteristics.

MOUNTING PAD LAYOUT DIMENSIONS

8-PIN PLASTIC TSON (UNIT: mm)

Remark The mounting pad layout in this document is for reference only.
When designing PCB, please consider workability of mounting, solder joint reliability, prevention of solder bridge and so on, in order to optimize the design.

PACKAGE DIMENSIONS

8-PIN PLASTIC TSON (UNIT: mm)

(Side View)

Remark $A>0$
(): Reference value

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) $: 260^{\circ} \mathrm{C}$ or below	IR260	
	Time at peak temperature	$: 10$ seconds or less	
	Time at temperature of $220^{\circ} \mathrm{C}$ or higher	$: 60$ seconds or less	
	Preheating time at 120 to $180^{\circ} \mathrm{C}$	$: 120 \pm 30$ seconds	
	Maximum number of reflow processes	$: 3$ times	
	Maximum chlorine content of rosin flux (\% mass)	$: 0.2 \%$ (Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	$: 350^{\circ} \mathrm{C}$ or below	HS350
	Soldering time (per side of device)	$: 3$ seconds or less	
	Maximum chlorine content of rosin flux (\% mass)	$: 0.2 \%$ (Wt.) or below	

CAUTION

Do not use different soldering methods together (except for partial heating).

Caution GaAs Products

This product uses gallium arsenide (GaAs).
GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.

1. Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.

- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

