

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

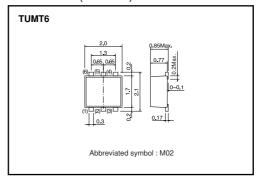
2.5V Drive Nch+Pch MOSFET **US6M2**

Structure

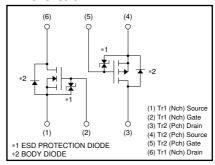
Silicon N-channel MOSFET / Silicon P-channel MOSFET

● Features

- 1) Nch MOSFET and Pch MOSFET are put in TUMT6 package.
- 2) High-speed switching, low On-resistance.
- 3) Low voltage drive (2.5V drive).
- 4) Built-in G-S Protection Diode.


Applications

Switching


Packaging specifications

	Package	Taping	
Type	Code	TR	
	Basic ordering unit (pieces)	3000	
US6M2		0	

● Dimensions (Unit: mm)

●Inner circuit

● Absolute maximum ratings (Ta=25°C)

Parameter		Cumala al	Lin	I India	
		Symbol	Tr1: Nchannel	Tr2 : Pchannel	Unit
Drain-source voltage		VDSS	30	-20	V
Gate-source voltage		Vgss	12	-12	V
Drain current	Continuous	ID	±1.5	±1	Α
Drain current	Pulsed	I _{DP} *1	±6	±4	Α
Source current	Continuous	Is	0.6	-0.4	Α
(Body diode)	Pulsed	I _{SP} *1	6	-4	Α
Total power dissipation		Pn*2	1.	W / TOTAL	
		Fυ	0	W / ELEMENT	
Channel temperature		Tch	150		°C
Storage temperature		Tstg	−55 to +150		°C

^{*1} Pw≤10µs, Duty cycle≤1% *2 Mounted on a ceramic board.

●Thermal resistance

Parameter	Symbol	Limits	Unit
Channel to ambient	Rth(ch-a)*	125	°C/W / TOTAL
Charmer to ambient	Hill(CII-a)	179	°C/W / ELEMENT

^{*} Mounted on a ceramic board

N-ch

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Gate-source leakage	Igss	-	_	10	μΑ	Vgs=12V, Vps=0V
Drain-source breakdown voltage	V _{(BR) DSS}	30	_	_	٧	I _D = 1mA, V _{GS} =0V
Zero gate voltage drain current	I _{DSS}	_	_	1	μΑ	V _{DS} = 30V, V _{GS} =0V
Gate threshold voltage	V _{GS (th)}	0.5	_	1.5	٧	V _{DS} = 10V, I _D = 1mA
		_	170	240	mΩ	I _D = 1.5A, V _{GS} = 4.5V
Static drain-source on-state resistance	R _{DS (on)} *	-	180	250	mΩ	I _D = 1.5A, V _{GS} = 4V
resistance		-	240	340	mΩ	I _D = 1.5A, V _{GS} = 2.5V
Forward transfer admittance	Y _{fs} *	1.5	-	_	S	V _{DS} = 10V, I _D = 1.5A
Input capacitance	Ciss	-	80	_	рF	V _{DS} = 10V
Output capacitance	Coss	_	13	_	рF	V _{GS} =0V
Reverse transfer capacitance	Crss	_	12	_	рF	f=1MHz
Turn-on delay time	t _{d (on)} *	_	7	_	ns	V _{DD} ≒ 15V
Rise time	tr *	_	9	_	ns	ID= 0.75A
Turn-off delay time	td (off) *	_	15	_	ns	V _{GS} = 4.5V R _L = 20Ω
Fall time	t _f *	_	6	_	ns	R _G =10Ω
Total gate charge	Q _g *	_	1.6	2.2	nC	V _{DD} ≒15V, V _{GS} =4.5V
Gate-source charge	Q _{gs} *	_	0.5	_	nC	I _D = 1.5A
Gate-drain charge	Q _{gd} *	_	0.3	_	nC	$R_L=10\Omega$, $R_G=10\Omega$

^{*}Pulsed

$\bullet \textbf{Body diode characteristics} \ (Source-drain) \ (Ta=25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
Forward voltage	VsD	-	_	1.2	V	I _S = 0.6A, V _{GS} =0V

P-ch

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Gate-source leakage	Igss	-	-	10	μΑ	VGS= -12V, VDS=0V
Drain-source breakdown voltage	V _{(BR) DSS}	-20	_	_	٧	I _D = -1mA, V _{GS} =0V
Zero gate voltage drain current	IDSS	_	_	-1	μΑ	V _{DS} = -20V, V _{GS} =0V
Gate threshold voltage	V _{GS (th)}	-0.7	_	-2.0	٧	$V_{DS} = -10V, I_{D} = -1mA$
		-	280	390	mΩ	I _D = -1A, V _G S= -4.5V
Static drain-source on-state resistance	R _{DS (on)} *	-	310	430	mΩ	I _D = -1A, V _G S= -4V
16313141106		-	570	800	mΩ	I _D = -0.5A, V _G S= -2.5V
Forward transfer admittance	Y _{fs} *	0.7	-	-	S	$V_{DS} = -10V$, $I_{D} = -0.5A$
Input capacitance	Ciss	_	150	_	pF	V _{DS} = -10V
Output capacitance	Coss	_	20	_	pF	V _G S= 0V
Reverse transfer capacitance	Crss	_	20	_	pF	f=1MHz
Turn-on delay time	t _{d (on)} *	_	9	_	ns	V _{DD} ≒ –15V
Rise time	tr *	-	8	_	ns	ID= -0.5A
Turn-off delay time	td (off) *	_	25	_	ns	V _{GS} = -4.5V R _L = 30Ω
Fall time	t _f *	_	10	_	ns	R _G = 10Ω
Total gate charge	Q _g *	_	2.1	_	nC	V _{DD} ≒-15V, V _{GS} =-4.5V
Gate-source charge	Q _{gs} *	_	0.5	_	nC	I _D = -1A
Gate-drain charge	Q _{gd} *	_	0.5	_	nC	$R_L=15\Omega$, $R_G=10\Omega$

^{*}Pulsed

$\bullet \textbf{Body diode characteristics} \ (Source-drain) \ (Ta=25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Мах.	Unit	Conditions
Forward voltage	VsD	-	-	-1.2	V	I _S = -0.4A, V _{GS} =0V

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

