imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

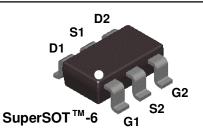
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

February 1999

FAIRCHILD

USB10H Dual P-Channel 2.5V Specified PowerTrench™ MOSFET


General Description

These P-Channel 2.5V specified MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive SO-8 and TSSOP-8 packages are impractical.

Applications

- Load switch
- Battery protection
- Power management

4 3 2 5 6 1

- 1.9 A, -20 V. $\rm R_{DS(on)}$ = 0.170 Ω @ $\rm V_{GS}$ = -4.5 V

• High performance trench technology for extremely

SuperSOTTM-6 package: small footprint (72% smaller

than standard SO-8); low profile (1mm thick).

• Low gate charge (3 nC typical).

• Fast switching speed.

low R_{DS(ON)}.

 $R_{DS(on)} = 0.250\Omega @ V_{GS} = -2.5 V$

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

V _{DSS} I	Drain-Source Voltage			
	Drain Oburce Voltage		-20	V
V _{GSS} (Gate-Source Voltage		±8	V
l _D I	Drain Current - Continuous	(Note 1a)	-1.9	A
	- Pulsed		-5	
P _D Power	Power Dissipation for Single Operation	(Note 1a)	0.96	W
		(Note 1b)	0.9	
		(Note 1c)	0.7	
TJ, T _{stg} (Operating and Storage Junction Temperature Range		-55 to +150	°C

Features

Thermal Resistance, Junction-to-Ambient (Note 1a) R_{0JA}

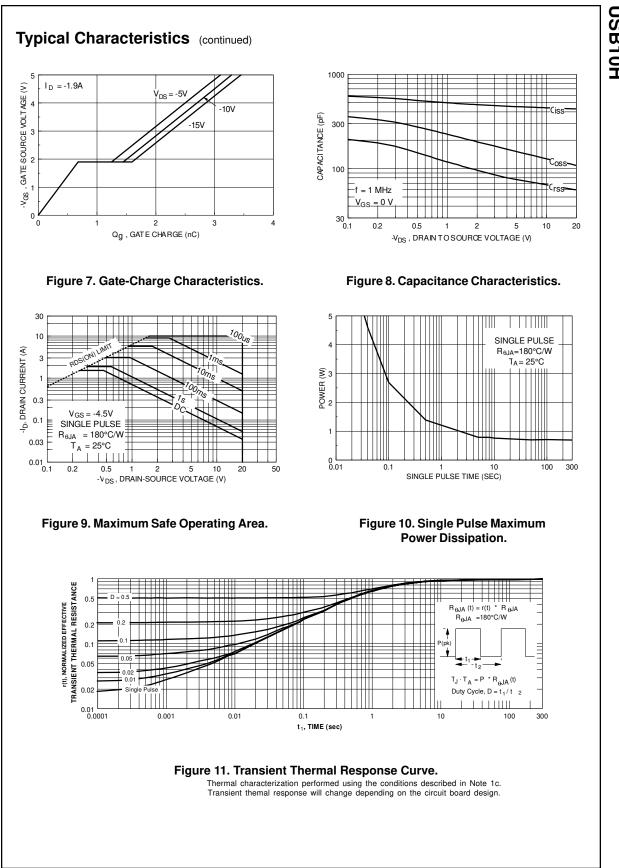
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	130	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	60	°C/W

Package Outlines and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity	
.306	USB10H 7" 8mm		8mm	3000 units	


©1999 Fairchild Semiconductor Corporation

USB10H


Off Char BV _{DSS}	Parameter	Test Conditions	Min	τγp	Max	Units
	acteristics					
	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-20			V
<u>A</u> BV⊡ss ∆Tj	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, Referenced to 25°C		-18		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μA
GSSF	Gate-Body Leakage Current, Forward	$V_{GS} = 8 V, V_{DS} = 0 V$			100	nA
GSSR	Gate-Body Leakage Current, Reverse	$V_{GS} = -8 \ V, \ V_{DS} = 0 \ V$			-100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-0.4	-0.9	-1.5	V
ΔVGS(th) ΔTJ	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		3		mV/∘C
R _{DS(on)}	Static Drain-Source On-Resistance	$ \begin{array}{l} V_{\rm GS} = -4.5 \ V, \ I_{\rm D} = -1.9 \ A \\ V_{\rm GS} = -4.5 \ V, \ I_{\rm D} = -1.9 \ A \ @125^{\circ} C \\ V_{\rm GS} = -2.5 \ V, \ I_{\rm D} = -1.7 \ A \end{array} $		0.127 0.182 0.194	0.170 0.270 0.250	Ω
D(on)	On-State Drain Current	V_{GS} = -4.5 V, V_{DS} =- 5 V	-5			Α
JFS	Forward Transconductance	$V_{DS} = -5 V, I_D = -1.9 A$		4		S
Dvnamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = -10 V, V_{GS} = 0 V,$		441		pF
Coss	Output Capacitance	f = 1.0 MHz		127		pF
Crss	Reverse Transfer Capacitance	1 1		67		pF
Switchin	g Characteristics (Note 2)					
d(on)	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A},$		6	12	ns
	Turn-On Rise Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		9	18	ns
d(off)	Turn-Off Delay Time			14	25	ns
f	Turn-Off Fall Time	-		3	9	ns
	Total Gate Charge	$V_{DS} = -10 V, I_{D} = -1.9 A,$		3	4.2	nC
ל ^a	Gate-Source Charge	$V_{GS} = -4.5 V$		0.7		nC
				0.8		nC
ସୁ _{gs}	Gate-Drain Charge			0.0		110
ସ୍କୁ ସ୍କୁ ସ୍କୁ Drain-So	-	d Maximum Batings		0.0		110
Q _{gs} Q _{gd}	Gate-Drain Charge urce Diode Characteristics and Maximum Continuous Drain-Source Dio			0.8	-0.8	A

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty}~\text{Cycle} \leq 2.0\%$

USB10H Rev. C

USB10H Rev. C

USB10H

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FAST[®] FAST[™] GTO[™] HiSeC[™] ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.