imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

USB 2.0 Hi-Speed 7-Port Hub Controller

General Description

The 7-Port Hub is a low power, OEM configurable, MTT (multi transaction translator) hub controller IC with 7 downstream ports for embedded USB solutions. The 7-port hub is fully compliant with the USB 2.0 Specification and will attach to an upstream port as a Full-Speed Hub or as a Full-/Hi-Speed Hub. The 7-Port Hub supports Low-Speed, Full-Speed, and Hi-Speed (if operating as a Hi-Speed Hub) downstream devices on all of the enabled downstream ports.

General Features

- · Hub Controller IC with 7 downstream ports
- High-performance multiple transaction translator MultiTRAK[™] Technology provides one transaction translator per port
- Enhanced OEM configuration options available through either a single serial I²C EEPROM, or SMBus Slave Port
- · 64-Pin (9x9 mm) QFN, RoHS compliant package
- Supports commercial (0°C to +70°C) and industrial (-40°C to +85°C) temperature ranges

Hardware Features

- · Low power operation
- Full Power Management with individual or ganged power control of each downstream port
- On-chip Power On Reset (POR)
- Internal 1.8V Voltage Regulator
- Fully integrated USB termination and Pull-up/Pulldown resistors
- On Board 24MHz Crystal Driver, Resonator, or External 24/MHz clock input
- USB host/device speed indicator. Per-port 3-color LED drivers indicate the speed of USB host and device connection - hi-speed (480 Mbps), fullspeed (12 Mbps), low-speed (1.5 Mbps)
- Enhanced EMI rejection and ESD protection performance

OEM Selectable Features

- Customizable Vendor ID, Product ID, and Device ID
- Select whether the hub is part of a compound device (When any downstream port is permanently hardwired to a USB peripheral device, the hub is part of a compound device.)
- Flexible port mapping and disable sequence. Ports can be disabled/reordered in any order to support multiple product SKUs. Hub will automatically reorder the remaining ports to match the Host controller's numbering scheme
- Programmable USB differential-pair pin location
 Eases PCB layout by aligning USB signal
 - lines directly to connectors
- Programmable USB signal drive strength. Recover USB signal integrity due to compromised system environments using 4-level driving strength resolution
- Select the presence of a permanently hardwired USB peripheral device on a port by port basis
- Configure the delay time for filtering the over-current sense inputs
- Configure the delay time for turning on downstream port power
- Indicate the maximum current that the 347-port hub consumes from the USB upstream port
- Indicate the maximum current required for the hub controller
- Support Custom String Descriptor up to 31 characters in length for:
 - Product String
 - Manufacturer String
 - Serial Number String
- Pin Selectable Options for Default Configuration
 - Select Downstream Ports as Non-Removable Ports
 - Select Downstream Ports as Disabled Ports
 - Select Downstream Port Power Control and Over-Current Detection on a Ganged or Individual Basis
 - Select USB Signal Drive Strength
 - Select USB Differential Pair Pin location

Applications

- LCD monitors and TVs
- Multi-function USB peripherals
- · PC mother boards
- Set-top boxes, DVD players, DVR/PVR
- Printers and scanners
- PC media drive bay
- · Portable hub boxes
- Mobile PC docking
- · Embedded systems

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

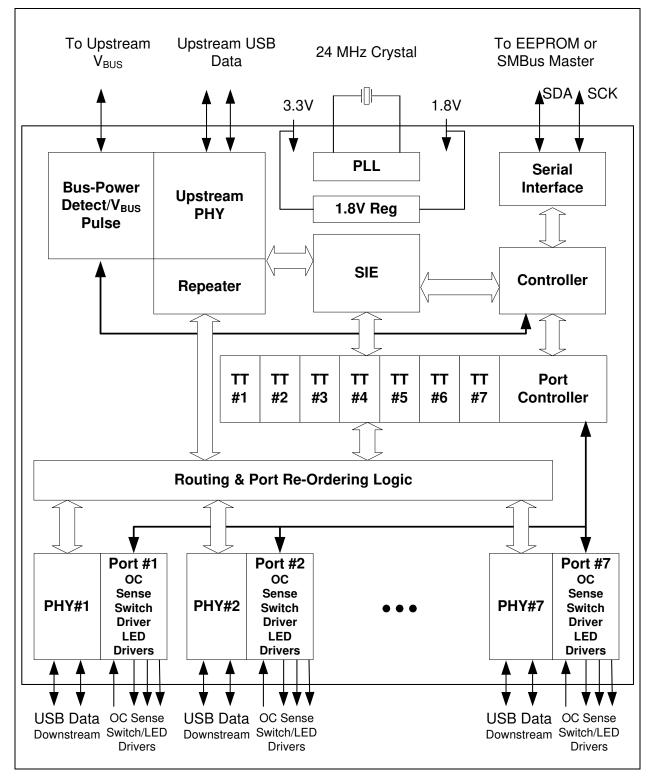
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Table of Contents

1.0 Acronyms & Definitions	5
1.0 Acronyms & Definitions	6
3.0 Pin Configuration	7
3.0 Pin Configuration 4.0 Pin Table	8
5.0 Pin Descriptions and Buffer Type Descriptions	17
7.0 Configuration Options	
B.0 DC Parameters	47
9.0 AC Specifications	51
10.0 Package outline	52
Appendix A: Data Sheet Revision History	54
The Microchip Web Site	55
Customer Change Notification Service	55
Customer Support	55
Product Identification System	56

USB2517/USB2517I


1.0 ACRONYMS & DEFINITIONS

EEPROMM: Electrically Erasable Programmable Read-Only Memory (a type of non-volatile memory)

- **EMI:** Electromagnetic Interference
- **ESD:** Electrostatic Discharge
- I²C: Inter-Integrated Circuit
- LCD: Liquid Crystal Display
- LED: Light Emitting Diode
- **OCS:** Over-current sense
- PCB: Printed Circuit Board
- PHY: Physical Layer
- PLL: Phase-Locked Loop
- PVR: Personal Video Recorder (also known as a Digital Video Recorder)
- QFN: Quad Flat No Leads
- **RoHS:** Restriction of Hazardous Substances Directive
- SCK: Serial Clock
- SD: Secure Digital
- SIE: Serial Interface Engine
- SMBus: System Management Bus
- TT: Transaction Translator

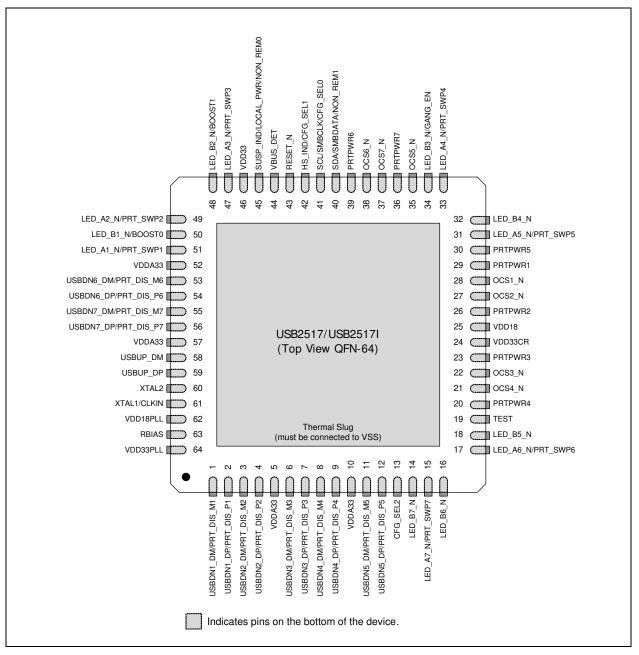

2.0 BLOCK DIAGRAM

FIGURE 2-1: USB2517/USB2517I BLOCK DIAGRAM

3.0 PIN CONFIGURATION

4.0 PIN TABLE

4.1 64-Pin List

TABLE 4-1: USB2517I 64-PIN TABLE

	Upstream USB 2.0 Interfaces (3 pins)				
USBUP_DP	USBUP_DM	VBUS_DET			
	Downstream 7-Port US	B 2.0 Interfaces (43 Pins)			
USBDN1_DP/ PRT_DIS_P1	USBDN2_DP/ PRT_DIS_P2	USBDN3_DP/ PRT_DIS_P3	USBDN4_DP/ PRT_DIS_P4		
USBDN5_DP/ PRT_DIS_P5	USBDN6_DP/ PRT_DIS_P6	USBDN7_DP/ PRT_DIS_P7	USBDN1_DM/ PRT_DIS_M1		
USBDN2_DM/ PRT_DIS_M2	USBDN3_DM/ PRT_DIS_M3	USBDN4_DM/ PRT_DIS_M4	USBDN5_DM/ PRT_DIS_M5		
USBDN6_DM/ PRT_DIS_M6	USBDN7_DM/ PRT_DIS_M7	LED_A1_N/ PRT_SWP1	LED_A2_N/ PRT_SWP2		
LED_A3_N/ PRT_SWP3	LED_A4_N/ PRT_SWP4	LED_A5_N/ PRT_SWP5	LED_A6_N/ PRT_SWP6		
LED_A7_N/ PRT_SWP7	LED_B1_N/ BOOST0	LED_B2_N/ BOOST1	LED_B3_N/ GANG_EN		
LED_B4_N	LED_B5_N	LED_B6_N	LED_B7_N		
PRTPWR1	PRTPWR2	PRTPWR3	PRTPWR4		
PRTPWR5	PRTPWR6	PRTPWR7	OCS1_N		
OCS2_N	OCS3_N	OCS4_N	OCS5_N		
OCS6_N	OCS7_N	RBIAS			
	Serial Port In	terface (4 Pins)			
SDA/ SMBDATA/ NON_REM1	SCL/ SMBCLK/ CFG_SEL0	HS_IND/ CFG_SEL1	CFG_SEL2		
	MISC	(5 Pins)			
XTAL1/CLKIN	XTAL2	SUSP_IND/ LOCAL_PWR/ NON_REM0	RESET_N		
TEST					

TABLE 4-1: USB2517I 64-PIN TABLE (CONTINUED)

	Analog Power (6 Pins)			
VDD18PLL	VDD33PLL	(4) VDDA33		
	Digital Power, 0	Ground (3 Pins)		
VDD33	VDD18	VDD33CR		
	Total 64			

5.0 PIN DESCRIPTIONS AND BUFFER TYPE DESCRIPTIONS

5.1 Pin Descriptions

This section provides a detailed description of each signal. The signals are arranged in functional groups according to their associated interface.

The "N" symbol in the signal name indicates that the active, or asserted, state occurs when the signal is at a low voltage level. When "N" is not present before the signal name, the signal is asserted when at the high voltage level.

The terms assertion and negation are used exclusively. This is done to avoid confusion when working with a mixture of "active low" and "active high" signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

Symbol	64 QFN	Buffer Type	Description
		Upst	ream USB Interfaces
USBUP_DP USBUP_DM	59 58	IO-U	USB Bus Data These pins connect to the upstream USB bus data signals (Host port, or upstream hub).
VBUS_DET	44	I/O12	Detect Upstream VBUS Power Detects state of Upstream VBUS power. The MCHP Hub monitors VBUS_DET to determine when to assert the internal D+ pull-up resistor (signaling a connect event). When designing a detachable hub, this pin must be connected to the VBUS power pin of the USB port that is upstream from the hub. For self-powered applications with a permanently attached host, this pin must be connected to 3.3V or 5.0V (typically VDD33).
	Downstream 7-Port USB 2.0 Interfaces		
USBDN[7:1]_DP/ PRT_DIS_P[7:1] & USBDN[7:1]_DM/ PRT_DIS_M[7:1]	56 54 12 9 7 4 2 55 53 11 8 6 3 1	IO-U	Hi-Speed USB Data & Port Disable Strap Option USBDN_DP[7:1] / USBDN_DM[7:1]: These pins connect to the downstream USB peripheral devices attached to the hub's port. Downstream Port Disable Strap option: PRT_DIS_P[7:1] / PRT_DIS_M[7:1]: If the strap is enabled by package and configuration settings (see Table 5-2), this pin will be sampled at RESET_N negation to determine if the port is disabled. To disable, pull up with 10K resistor to 3.3V.
PRTPWR[7:1]	36 39 30 20 23 26 29	012	USB Power Enable Enables power to USB peripheral devices downstream. Note: The hub supports active high power controllers only!

TABLE 5-1: USB2517/USB2517I PIN DESCRIPTIONS

Symbol	64 QFN	Buffer Type	Description
LED_A[7:1]_N/ PRT_SWP[7:1]	15 17 31 33 47 49 51	I/O12	Port LED Indicators & Port Swap strapping option Indicator LED for ports 1-7. Will be active low when LED support is enabled via EEPROM or SMBus. If this strap is enabled by package and configuration settings (see Table 5-2), this pin will be sampled at RESET_N negation to deter- mine the electrical connection polarity of the downstream USB Port pins (USB_DP and USB_DM). Also, the active state of the LED will be determined as follows: '0' = Port Polarity is normal, LED is active high. '1' = Port Polarity (USB_DP and USB_DM) is swapped, LED is active low.
LED_B[7:4]_N	14 16 18 32	I/O12	Enhanced Indicator Port 4-7 LED Enhanced Indicator LED for ports 4-7. Will be active low when LED support is enabled via EEPROM or SMBus.
LED_B3_N/ GANG_EN	34	I/O12	Enhanced Port 3 LED, Gang Power, and Over-current Strap Option Enhanced Indicator LED for port 3. Will be active low when LED support is enabled via EEPROM or SMBus. GANG_EN: Selects between Gang or Individual Port power and Over-current sensing. If this strap is enabled by package and configuration settings (see Table 5-2), this pin will be sampled at RESET_N negation to deter- mine the mode as follows: '0' = Individual sensing & switching, and LED_B3_N is active high. '1' = Ganged sensing & switching, and LED_B3_N is active low.

TABLE 5-1:	USB2517/USB2517I PIN DESCRIPTIONS (CONT	
IADEE J-I.		

TABLE 5-1:	USB2517/USB2517I PIN DESCRIPTIONS (CONTINUED)	
------------	---	--

Symbol	64 QFN	Buffer Type	Description
LED_B[2:1]_N/ BOOST[1:0]	48 50	I/O12	Enhanced Port [2:1] LED & PHY Boost strapping option
			Enhanced Indicator LED for ports 1 & 2. Will be active low when
			LED support is enabled via EEPROM or SMBus.
			BOOST[1:0]: If this strap is enabled by package and configuration settings (see Table 5-2), this pin will be sampled at RESET_N negation to determine if all PHY ports (upstream and downstream) operate at a normal or boosted electrical level. Also, the active state of the LEDs will be determined as follows:
			See Section 7.2.1.26, "Register F6h: Boost_Up" and Section 7.2.1.28, "Register F8h: Boost_4:0".
			BOOST[1:0] = BOOST_IOUT[1:0]
			BOOST[1:0] = '00',
			LED_B2_N is active high,
			LED_B1_N is active high.
			BOOST[1:0] = '01',
			LED_B2_N is active high,
			LED_B1_N is active low.
			BOOST[1:0] = '10',
			LED_B2_N is active low,
			LED_B1_N is active high.
			BOOST[1:0] = '11',
			LED_B2_N is active low,
			LED_B1_N is active low.
OCS[7:1]_N	37	IPU	Over-current Sense
	38 35		Input from external current monitor indicating an over-current con-
	21		dition.
	22		
	27		{Note: Contains internal pull-up to 3.3V supply}
	28	. –	
RBIAS	63	I-R	USB Transceiver Bias
			A 12.0k Ω (+/- 1%) resistor is attached from the ground to this pin
			to set the transceiver's internal bias settings.

Symbol	64 QFN	Buffer Type	Description
		S	erial Port Interface
SDA/	40	I/OSD12	Serial Data / SMB Data
SMBDATA/ NON_REM1			NON_REM1: Non-removable port strap option.
			If this strap is enabled by package and configuration settings (see Table 5-2) this pin will be sampled (in conjunction with SUSP_IND/LOCAL_PWR/NON_REM0) at RESET_N negation to determine if ports [3:1] contain permanently attached (non-removable) devices:
			NON_REM[1:0] = '00', All ports are removable,
			NON_REM[1:0] = '01', Port 1 is non-removable,
			NON_REM[1:0] = '10', Ports 1 & 2 are non-removable,
			NON_REM[1:0] = '11', Ports 1, 2 & 3 are non-removable.
SCL/	41	I/OSD12	Serial Clock (SCL)
			SMBus Clock (SMBCLK)
SMBCLK/			Configuration Select_SEL0: The logic state of this multifunctional
CFG_SEL0			pin is internally latched on the rising edge of RESET_N (RESET_N negation), and will determine the hub configuration method as described in Table 5-2, "USB2517I SMBUS or EEPROM Interface Behavior".
HS_IND/ CFG_SEL1	42	I/O12	Hi-Speed Upstream port indicator & Configuration Programming Select
			HS_IND: High Speed Indicator for upstream port connection speed.
			The active state of the LED will be determined as follows:
			CFG SEL1 = '0',
			HS_IND is active high,
			CFG_SEL1 = '1',
			HS_IND is active low,
			'Asserted' = Hub is connected at HS 'Negated' = Hub is connected at FS
			CFG_SEL1: The logic state of this pin is internally latched on the rising edge of RESET_N (RESET_N negation), and will determine the hub configuration method as described in Table 5-2, "USB2517I SMBUS or EEPROM Interface Behavior".
CFG_SEL2	13	Ι	Configuration Programming Select This pin is not available in all packages; it is held to a logic '0' when not available. The logic state of this pin is internally latched on the rising edge of RESET_N (RESET_N negation), and will determine the hub con- figuration method as described in Table 5-2, "USB2517I SMBUS or EEPROM Interface Behavior".

TABLE 5-1 :	USB2517/USB2517I PIN DESCRIPTIONS ((CONTINUED))
--------------------	-------------------------------------	-------------	---

TABLE 5-1: USB2517/USB2517I PIN DESCRIPTIONS (CONTINUED)

Symbol	64 QFN	Buffer Type	Description
			MISC
XTAL1/ CLKIN	61	ICLKx	Crystal Input/External Clock Input
			24MHz crystal or external clock input. This pin connects to either one terminal of the crystal or to an external 24MHz clock when a crystal is not used.
XTAL2	60	OCLKx	Crystal Output
			24MHz Crystal This is the other terminal of the crystal. It can be treated as a no connect when an external clock source is used to drive XTAL1/ CLKIN. This output must not be used to drive any external circuitry other than the crystal circuit.
RESET_N	43	IS	RESET Input
			The system can reset the chip by driving this input low. The minimum active low pulse is 1 $\mu s.$
			When the RESET_N pin is pulled to VDD33, the internal POR (Power on Reset) is enabled and no external reset circuitry is required. The internal POR holds the internal logic in reset until the power supplies are stable.
SUSP_IND/ LOCAL_PWR/ NON_REM0	45	I/O12	Active/Suspend status LED or Local-Power & Non-Removable Strap Option
			Suspend Indicator: Indicates the USB state of the hub.
			'negated' = Unconfigured or configured and in USB suspend 'asserted' = Hub is configured, and is active (i.e., not in suspend)
			Local Power: Detects availability of local self-power source.
			Low = Self/local power source is NOT available (i.e., Hub gets all power from the upstream USB VBus). High = Self/local power source is available.
			NON_REM0 Strap Option: If this strap is enabled by package and configuration settings (see Table 5-2, "USB2517I SMBUS or EEPROM Interface Behavior"), this pin will be sampled (in conjunction with NON_REM1) at RESET_N negation to determine if ports [3:1] contain permanently attached (non-removable) devices. Also, the active state of the LED will be determined as follows:
			NON_REM[1:0] = '00', All ports are removable, and the LED is active high
			NON_REM[1:0] = '01', Port 1 is non-removable, and the LED is active low
			NON_REM[1:0] = '10', Ports 1 & 2 are non-removable, and the LED is active high
			NON_REM[1:0] = '11', Ports 1, 2 & 3 are non-removable, and the LED is active low

Symbol	64 QFN	Buffer Type	Description
TEST	19	IPD	TEST pin
			XNOR continuity tests all signal pins on the hub. Please contact your MCHP representative for a detailed description of how this test mode is enabled and utilized.
	•	Powe	r, Ground, No Connect
VDD18	25		VDD Core
			+1.8V core power. This pin must have a 1.0 μ F (or greater) ±20% (ESR <0.1 Ω) capacitor to VSS.
VDD33PLL	64		VDD 3.3 PLL Regulator Reference
			+3.3V power supply for the Digital I/O. If the internal PLL 1.8V regulator is enabled, then this pin acts as the regulator input.
VDD18PLL	62		VDD PLL
			+1.8V Filtered analog power for internal PLL. This pin must have a $1.0\mu F$ (or greater) ±20% (ESR <0.1 Ω) capacitor to VSS.
VDD33	46		VDD I/O
			+3.3V Digital I/O power
VDDA33	5 10		VDD Analog I/O
	52 57		+3.3V Filtered analog PHY power which is shared between adja- cent ports.
VDD33CR	24		VDDIO/VDD 3.3 Core Regulator Reference
			+3.3V power supply for the Digital I/O. If the internal core regulator is enabled, then VDD33CR acts as the regulator input.
Ground	VSS	Slug	Ground

TABLE 5-1: USB2517/USB2517I PIN DESCRIPTIONS (CONTINUED)

TABLE 5-2: USB2517I SMBUS OR EEPROM INTERFACE BEHAVIOR

CFG_SEL2	CFG_SEL1	CFG_SEL0	SMBus or EEPROM Interface Behavior
0	0	0	Internal Default Configuration Strap Option sare Enabled
0	0	1	 Configured as an SMBus slave for external download of user-defined descriptors SMBus slave address is '0101100' Strap Options are Disabled All Settings are Controlled by Registers
0	1	0	Internal Default Configuration Strap Options are Enabled Bus Power Operation LED Mode = USB

© 2013-2016 Microchip Technology Inc.

CFG_SEL2	CFG_SEL1	CFG_SEL0	SMBus or EEPROM Interface Behavior
0	1	1	 2-Wire I²C EEPROMS are supported Strap Options are Disabled All Settings are Controlled by Registers
1	0	0	Internal Default ConfigurationStrap Options are DisabledDynamic Power Switching is Enabled
1	0	1	Internal Default Configuration Strap Options are Disabled Dynamic Power Switching is Enabled LED Mode = USB
1	1	0	Internal Default Configuration Strap Options are Disabled
1	1	1	Internal Default Configuration Strap Options are Disabled LED Mode = USB Ganged Power Switching Ganged Over-Current Sensing

TABLE 5-2: USB2517I SMBUS OR EEPROM INTERFACE BEHAVIOR (CONTINUED)

5.2 Buffer Type Descriptions

TABLE 5-3: USB2517/USB2517I BUFFER TYPE DESCRIPTIONS

Buffer	Description
I	Input.
IPD	Input with internal weak pull-down resistor.
IPU	Input with internal weak pull-up resistor.
IS	Input with Schmitt trigger.
O12	Output 12mA.
I/O12	Input/Output buffer with 12mA sink and 12mA source.
I/OSD12	Open drain12mA sink with Schmitt trigger, and must meet I^2C -Bus Specification Version 2.1 requirements.
ICLKx	XTAL clock input.
OCLKx	XTAL clock output.
I-R	RBIAS.
IO-U	Analog Input/Output Defined in USB specification.

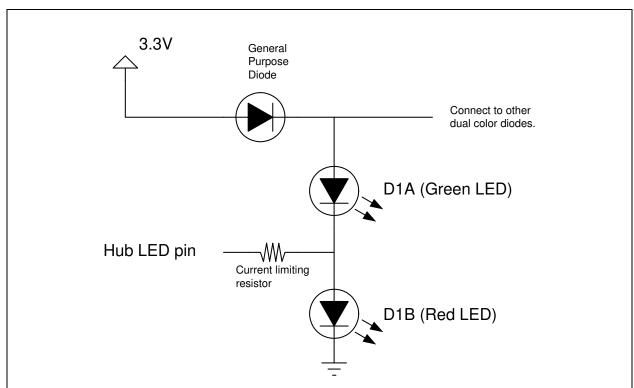
6.0 LED USAGE DESCRIPTION

6.1 LED Functionality

The hub supports 2 different (mutually exclusive) LED modes. The USB Mode provides 14 LED's that conform to the USB 2.0 specification functional requirements for Green and Amber LED's. The LED Mode "Speed indicator" provides the downstream device connection speed.

6.1.1 USB MODE 14-WIRE

The LED_A[7:1]_N pins are used to provide Green LED support as defined in the USB 2.0 specification. The LED_B[7:1]_N pins are used to provide Amber LED support as defined in the USB 2.0 specification. The USB Specification defines the LED's as port status indicators for the downstream ports. Please note that no indication of port speed is possible in this mode. The pins are utilized as follows:


- LED_A1_N = Port 1 green LED
- LED_A2_N = Port 2 green LED
- LED_A3_N = Port 3 green LED
- LED A4 N = Port 4 green LED
- LED A5 N = Port 5 green LED
- LED A6 N = Port 6 green LED
- LED_A7_N = Port 7 green LED
- LED B1 N = Port 1 amber LED
- LED B2 N = Port 2 amber LED
- LED B3 N = Port 3 amber LED
- LED B4 N = Port 4 amber LED
- LED B5 N = Port 5 amber LED
- LED B6 N = Port 6 amber LED
- LED B7 N = Port 7 amber LED

6.1.2 LED MODE SPEED INDICATION

The LED_A[7:1]_N pins are used to provide connection status as well as port speed by using dual color LED's. This scheme requires that the LED's be in the same package, and that a third color is produced so that the user perceives both LED's as being driven "simultaneously".

The LED_A[7:1] pins used in this mode are connected to 7 dual color LED's (each LED pair in a single package). These pins indicate the USB speed of each attached downstream device.

Each dual color LED provides two separate colors (commonly Green and Red). If each of these separate colors are pulsed on and off at a rapid rate, a user will see a third color (in this example, Orange). Using this method, 4 different "color" states are possible (Green, Red, Orange, and Off).

FIGURE 6-1: DUAL COLOR LED IMPLEMENTATION EXAMPLE

Figure 6-1 shows a simple example of how this LED circuit will be implemented. The circuit should be replicated for each of the 7 LED pins on the HUB. In this circuit, when the LED pin is driven to a logic low state, the Green LED will light up. When the LED pin is driven to a Logic High state the Red LED will light up. When a 1 KHz square wave is driven out on the LED pin, the Green and Red LED's will both alternately light up giving the effect of the color Orange. When nothing is driven out on the LED pin (i.e. the pin floats to a "tri-state" condition), neither the Green nor Red LED will light up, this is the "Off" state.

The assignment is as follows:

- LED_A1_N = LED D1 (Downstream Port 1)
- LED_A2_N = LED D2 (Downstream Port 2)
- LED_A3_N = LED D3 (Downstream Port 3)
- LED_A4_N = LED D4 (Downstream Port 4)
- LED_A5_N = LED D5 (Downstream Port 5)
- LED_A6_N = LED D6 (Downstream Port 6)
- LED_A7_N = LED D7 (Downstream Port 7)

The usage is as follows:

- LED_Ax_N Driven to Logic Low = LS device attached (Green LED)
- LED_Ax_N Driven to Logic High = FS device attached (Red LED)
- LED_Ax_N Pulsed @ 1 KHz= HS device attached (Orange color by pulsing Red & Green).
- LED_Ax_N is tri-state= No devices are attached, or the hub is in suspend, LED's are off.

7.0 CONFIGURATION OPTIONS

7.1 7-Port Hub

The USB 2.0 7-Port Hub is fully compliant to the Universal Serial Bus Specification Revision 2.0 from April 27, 2000 (12/ 7/2000 and 5/28/2002 Errata). Please reference Chapter 11 (Hub Specification) for general details regarding Hub operation and functionality.

For performance reasons, the 7-Port Hub provides 1 Transaction Translator (TT) per port (defined as Multi-TT configuration), divided into 4 non-periodic buffers per TT.

7.1.1 HUB CONFIGURATION OPTIONS

The MCHP Hub supports a large number of features (some are mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. There are three principal ways to configure the Hub: SMBus, EEPROM, or by internal default settings (with or without pin strapping option overrides). In all cases, the configuration method will be determined by the CFG_SEL2, CFG_SEL1 and CFG_SEL0 pins immediately after RESET_N negation.

7.1.1.1 Power Switching Polarity

Note: The hub will support active high power controllers only!

7.1.2 VBUS DETECT

According to Section 7.2.1 of the USB 2.0 Specification, a downstream port can never provide power to its D+ or D- pull up resistors unless the upstream port's VBUS is in the asserted (powered) state. The VBUS_DET pin on the Hub monitors the state of the upstream VBUS signal and will not pull up the D+ resistor if VBUS is not active. If VBUS goes from an active to an inactive state (not powered), the Hub will remove power from the D+ pull up resistor within 10 seconds.

7.2 **EEPROM** Interface

The MCHP Hub can be configured via a 2-wire (I²C) EEPROM (256x8). (Please see Table 5-2, "USB2517I SMBUS or EEPROM Interface Behavior" for specific details on how to enable configuration via an I²C EEPROM).

The internal state machine will (when configured for EEPROM support) read the external EEPROM for configuration data. The Hub will then "attach" to the upstream USB host.

Note: The Hub does not have the capacity to write, or "Program," an external EEPROM. The Hub only has the capability to read external EEPROMs. The external EEPROM will be read (even if it is blank or non-populated), and the Hub will be "configured" with the values that are read.

Please see Internal Register Set (Common to EEPROM and SMBus) for a list of data fields available.

7.2.1 INTERNAL REGISTER SET (COMMON TO EEPROM AND SMBUS)

TABLE 7-1: INTERNAL DEFAULT, EEPROM AND SMBUS REGISTER MEMORY MAP

Reg Addr	R/W	Register Name	Abbr	Internal Default ROM	SMBus and EEPROM POR Values
00h	R/W	VID LSB	VIDL	24h	0x00
01h	R/W	VID MSB	VIDM	04h	0x00
02h	R/W	PID LSB	PIDL	17h	0x00
03h	R/W	PID MSB	PIDM	25h	0x00
04h	R/W	DID LSB	DIDL	00h	0x00
05h	R/W	DID MSB	DIDM	00h	0x00

© 2013-2016 Microchip Technology Inc.

USB2517/USB2517I

Reg Addr	R/W	Register Name	Abbr	Internal Default ROM	SMBus and EEPROM POR Values
06h	R/W	Config Data Byte 1	CFG1	9Bh	0x00
07h	R/W	Config Data Byte 2	CFG2	20h	0x00
08h	R/W	Config Data Byte 3	CFG3	00h	0x00
09h	R/W	Non-Removable Devices	NRD	00h	0x00
0Ah	R/W	Port Disable (Self)	PDS	00h	0x00
0Bh	R/W	Port Disable (Bus)	PDB	00h	0x00
0Ch	R/W	Max Power (Self)	MAXPS	01h	0x00
0Dh	R/W	Max Power (Bus)	MAXPB	32h	0x00
0Eh	R/W	Hub Controller Max Current (Self)	HCMCS	01h	0×00
0Fh	R/W	Hub Controller Max Current (Bus)	HCMCB	32h	0×00
10h	R/W	Power-on Time	PWRT	32h	0x00
11h	R/W	LANG_ID_H	LANGIDH	00h	0x00
12h	R/W	LANG_ID_L	LANGIDL	00h	0x00
13h	R/W	MFR_STR_LEN	MFRSL	00h	0x00
14h	R/W	PRD_STR_LEN	PRDSL	00h	0x00
15h	R/W	SER_STR_LEN	SERSL	00h	0x00
16h-53h	R/W	MFR_STR	MANSTR	00h	0x00
54h-91h	R/W	PROD_STR	PRDSTR	00h	0x00
92h-Cfh	R/W	SER_STR	SERSTR	00h	0x00
D0h-F5h	R/W	Reserved	N/A	00h	0x00
F6h	R/W	Boost_Up	BOOSTUP	00h	0x00
F7h	R/W	Boost_7:5	BOOST75	00h	0x00
F8h	R/W	Boost_4:0	BOOST40	00h	0x00
F9h	R/W	Reserved	N/A	00h	0x00
FAh	R/W	Port Swap	PRTSP	00h	0x00
FBh	R/W	Port Remap 12	PRTR12	00h	0x00
FCh	R/W	Port Remap 34	PRTR34	00h	0x00
FDh	R/W	Port Remap 56	PRTR56	00h	0x00

TABLE 7-1: INTERNAL DEFAULT, EEPROM AND SMBUS REGISTER MEMORY MAP

Reg Addr	R/W	Register Name	Abbr	Internal Default ROM	SMBus and EEPROM POR Values
FEh	R/W	Port Remap 7	PRTR7	00h	0x00
FFh	R/W	Status/Command Note: SMBus register only	STCD	00h	0x00

TABLE 7-1: INTERNAL DEFAULT, EEPROM AND SMBUS REGISTER MEMORY MAP

7.2.1.1 Register 00h: Vendor ID (LSB)

Bit Number	Bit Name	Description
7:0	VID_LSB	Least Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the Vendor of the user device (assigned by USB-Interface Forum). This field is set by the OEM using either the SMBus or EEPROM interface options.

7.2.1.2 Register 01h: Vendor ID (MSB)

Bit Number	Bit Name	Description
7:0	VID_MSB	Most Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the Vendor of the user device (assigned by USB-Interface Forum). This field is set by the OEM using either the SMBus or EEPROM interface options.

7.2.1.3 Register 02h: Product ID (LSB)

Bit Number	Bit Name	Description
7:0	PID_LSB	Least Significant Byte of the Product ID. This is a 16-bit value that the Vendor can assign that uniquely identifies this particular product (assigned by OEM). This field is set by the OEM using either the SMBus or EEPROM interface options.

7.2.1.4 Register 03h: Product ID (MSB)

Bit Number	Bit Name	Description
7:0	PID_MSB	Most Significant Byte of the Product ID. This is a 16-bit value that the Vendor can assign that uniquely identifies this particular product (assigned by OEM). This field is set by the OEM using either the SMBus or EEPROM interface options.

7.2.1.5 Register 04h: Device ID (LSB)

Bit Number	Bit Name	Description
7:0	DID_LSB	Least Significant Byte of the Device ID. This is a 16-bit device release num- ber in BCD format (assigned by OEM). This field is set by the OEM using either the SMBus or EEPROM interface options.

7.2.1.6 Register 05h: Device ID (MSB)

Bit Number	Bit Name	Description
7:0	DID_MSB	Most Significant Byte of the Device ID. This is a 16-bit device release number in BCD format (assigned by OEM). This field is set by the OEM using either the SMBus or EEPROM interface options.

7.2.1.7 Register 06h: CONFIG_BYTE_1

Bit Number	Bit Name	Description
7	SELF_BUS_PWR	Self or Bus Power: Selects between Self- and Bus-Powered operation.
		The Hub is either Self-Powered (draws less than 2mA of upstream bus power) or Bus-Powered (limited to a 100mA maximum of upstream power prior to being configured by the host controller). When configured as a Bus-Powered device, the MCHP Hub consumes less than 100mA of current prior to being configured. After configuration, the Bus- Powered MCHP Hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100mA per externally available downstream port) must consume no more than 500mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated. When configured as a Self-Powered device, <1mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500mA of current. This field is set by the OEM using either the SMBus or EEPROM interface options. Please see the description under Dynamic Power for the self/bus power func- tionality when dynamic power switching is enabled. 0 = Bus-Powered operation
		1 = Self-Powered operation
		Note: If Dynamic Power Switching is enabled, this bit is ignored and the LOCAL_PWR pin is used to determine if the hub is operating from self or bus power.
6	Reserved	Reserved
5	HS_DISABLE	 High Speed Disable: Disables the capability to attach as either a High/Full-speed device, and forces attachment as Full-speed only (i.e. no Hi-Speed support). 0 = High-/Full-Speed 1 = Full-Speed-Only (Hi-Speed disabled!)
4	MTT_ENABLE	Multi-TT enable: Enables one transaction translator per port operation.
		Selects between a mode where only one transaction translator is available for all ports (Single-TT), or each port gets a dedicated transaction translator (Multi-TT) {Note: The host may force single-TT mode only}.
		0 = single TT for all ports 1 = one TT per port (multiple TT's supported)
3	EOP_DISABLE	EOP Disable: Disables EOP generation of EOF1 when in Full-Speed mode. During FS operation only, this permits the Hub to send EOP if no downstream traffic is detected at EOF1. See Section 11.3.1 of the USB 2.0 Specification for additional details. Note: generation of an EOP at the EOF1 point may pre- vent a Host controller (operating in FS mode) from placing the USB bus in suspend.
		0 = EOP generation is normal 1 = EOP generation is disabled

USB2517/USB2517I

Bit Number	Bit Name	Description
2:1	CURRENT_SNS	Over-current Sense: Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a port or ganged basis is hardware implementation dependent. 00 = Ganged sensing (all ports together) 01 = Individual port-by-port 1x = Over-current sensing not supported (must only be used with Bus-Pow- ered configurations!)
0	PORT_PWR	 Port Power Switching: Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port- by-port basis (individual). The ability to support power enabling on a port or ganged basis is hardware implementation dependent. 0 = Ganged switching (all ports together) 1 = Individual port-by-port switching

7.2.1.8 Register 07h: Configuration Data Byte 2

Bit Number	Bit Name	Description
7	DYNAMIC	Dynamic Power Enable: Controls the ability of the Hub to automatically change from Self-Powered operation to Bus-Powered operation if the local power source is removed or is unavailable (and from Bus-Powered to Self- Powered if the local power source is restored). {Note: If the local power source is available, the Hub will always switch to Self-Powered operation.} When Dynamic Power switching is enabled, the Hub detects the availability of a local power source by monitoring the external LOCAL_PWR pin. If the Hub detects a change in power source availability, the Hub immediately discon- nects and removes power from all downstream devices and disconnects the upstream port. The Hub will then re-attach to the upstream port as either a Bus-Powered Hub (if local-power is unavailable) or a Self-Powered Hub (if local power is available). 0 = No Dynamic auto-switching 1 = Dynamic Auto-switching capable
6	Reserved	Reserved
5:4	OC_TIMER	Over-Current Timer: Over-Current Timer delay. 00 = 0.1 ms 01 = 4 ms 10 = 8 ms 11 = 16 ms

Bit Number	Bit Name	Description
3	COMPOUND	Compound Device: Allows the OEM to indicate that the Hub is part of a com- pound (see the USB Specification for definition) device. The applicable port(s) must also be defined as having a "Non-Removable Device".
		Note: When configured via strapping options, declaring a port as non- removable automatically causes the hub controller to report that it is part of a compound device.
		0 = No 1 = Yes, Hub is part of a compound device
2:0	Reserved	Reserved

7.2.1.9 Register 08h: Configuration Data Byte 3

Bit Number	Bit Name	Description
7:4	Reserved	Reserved
3	PRTMAP_EN	Port Re-mapping enable: Selects the method used by the hub to assign port numbers and disable ports.
		'1' = Port Re-map mode
2:1	LED_MODE	LED Mode Selection: The LED_A[47:1]_N and LED_B[47:1]_N pins support several different modes of operation. '00' = USB Mode '01' = Speed Indication Mode '10' = Same as '00', USB Mode '11' = Same as '00', USB Mode Warning: Do not enable an LED mode that requires LED pins that are not available in the specific package being used in the implementation! Note: The Hub will only report that it supports LED's to the host when USB mode is selected. All other modes will be reported as No LED Support.
0	STRING_EN	Enables String Descriptor Support '0' = String Support Disabled '1' = String Support Enabled