imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

USB2642

USB 2.0 Hub and Flash Media Card Controller Combo

General Description

The USB2642 is a USB 2.0 compliant, hi-speed hub and card reader combo solution. This fully-integrated, single chip solution provides USB expansion and flash media reader/writer integration. The Microchip USB2642 provides an ultra fast interface between a USB host and today's popular flash media formats. The controller allows read/write capability to flash media including the following:

- Secure DigitalTM (SD)
- SD High CapacityTM (SDHC)
- SD Extended CapacityTM (SDXC)
- MultiMediaCardTM(MMC)
- Embedded MultiMediaCardTM (eMMC)

The USB2642 offers a versatile, cost-effective and energy-efficient hub controller with 2 downstream USB 2.0 ports and a flash media interface. The flash media interface can support sustained transfer rates exceeding 35 MB/s.

Additionally, the USB2642 provides an I^2C^{TM} over USB bridge and an SD over USB bridge. The I^2C bridge allows for control of any I^2C slave device operating at 50KHz serial clock.

Highlights

- PortMap
 - Flexible port mapping and port disable sequencing supports multiple platform designs
- PortSwap
 - Programmable USB differential-pair pin locations eases PCB design by aligning USB signal traces directly to connectors
- PHYBoost
 - Programmable USB transceiver drive strength recovers signal integrity

Features

- Single-chip USB 2.0 hub controller with 2
 exposed hi-speed downstream ports
- The dedicated flash media reader is internally attached to a 3rd downstream port of the hub as a USB compound device
- Hub and flash media reader/writer configuration from a single source:
 - Configures internal code using an external SPI ROM
 - Supports execution of external code from SPI Flash EEPROM
 - Supports custom vendor, product, and language ID when using an external EEPROM
- Supports full power management with individual or ganged power control of each downstream port
- Transaction Translator (TT) in the hub supports operation of FS and LS peripherals
- · Single 24 MHz crystal support
- Control of peripheral I²C devices by USB host.
- Supports internally or externally regulated 1.8 V core voltage operation
- · Supports storage addressability of up to 2TB
- · RoHS compliant package
 - USB2642: 48-pin (7x7 mm²) QFN
- Temperature ranges:
 - Commercial Range (0 °C to +70 °C)
 - Industrial Range (-40 °C to +85 °C)

Target Applications

- · Desktop and mobile PCs
- Monitors and televisions
- · Mobile PC docking
- Consumer A/V
- · Media players/viewers
- Printers
- · Flash media card readers/writers

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Table of Contents

1.0 Overview	4
2.0 Block Diagram	6
3.0 USB2642 Pin Configuration	7
4.0 Pin Table	8
5.0 Pin Descriptions	9
6.0 Pin Reset States	17
7.0 Configuration Options	19
8.0 DC Parameters	43
9.0 AC Specifications	47
10.0 Package Outlines	49
11.0 Revision History	51
Appendix A: Acronyms	52
Appendix B: References	53
The Microchip Web Site	54
Customer Change Notification Service	54
Customer Support	54
Product Identification System	55

1.0 OVERVIEW

1.1 Introduction

The USB2642 offers a USB 2.0 compliant, versatile, cost-effective and energy-efficient hi-speed hub controller with 2 downstream USB ports and an SD/MMC flash media card interface. The dedicated flash media reader is internally attached to a 3rd downstream port of the hub as a USB compound device. This combo solution supports today's popular multi-format flash media card formats. The flash media interface can support sustained transfer rates exceeding 35 MB/ s if the media and host support those rates.

The USB2642 also provides I²C over USB. The I²C bridge allows for control of any I²C device operating at 50kHz clock.

The USB2642 will attach to an upstream port as either a full-speed or full-/hi-speed hub. The hub supports low-speed, full-speed, and hi-speed (if operating as a full-/hi-speed hub) downstream devices on all of the enabled downstream ports.

All required resistors on the USB ports are integrated into the hub. This includes all series termination resistors on D+ and D- pins and all required pull-down and pull-up resistors. The over-current sense inputs for the downstream facing ports have internal pull-up resistors.

The USB2642 includes programmable features such as:

PortMap which provides flexible port mapping and disable sequences. The downstream ports of a USB2642 hub can be reordered or disabled in any sequence to support multiple platform designs with minimum effort. For any port that is disabled, the USB2642 automatically reorders the remaining ports to

match the USB host controller's port numbering scheme.

PortSwap which adds per-port programmability to USB differential-pair pin locations. PortSwap allows direct alignment of USB signals (D+/D-) to connectors avoiding uneven trace length or crossing of the USB differential signals on the PCB.

PHYBoost which enables four programmable levels of USB signal drive strength in downstream port transceivers. PHYBoost attempts to restore USB signal integrity. The diagram on the right shows an example of Hi-Speed USB eye diagrams before (PHYBoost at 0%) and after (PHYBoost at 12%) signal integrity restoration in a compromised system environment.

USB Port Virtualization

1.2 Device Features

1.2.1 HARDWARE FEATURES

- Single-chip hub, flash media controller, and I²C device control over USB
- Supports commercial (0 °C to +70 °C) and industrial (-40 °C to +85 °C) temperature ranges
- Transaction Translator (TT) in the hub supports operation of FS and LS peripherals
- · Full power management with individual or ganged power control of each downstream port
- · Optional support for external firmware access via SPI
- · Code execution via SPI ROM which must meet the following qualifications:
 - 60 MHz operation support
 - Single bit or dual bit mode support
 - Mode 0 or mode 3 SPI support

Compliant with the following flash media card specifications:

- Secure Digital 2.0
 - SDSC, SDHC, and SDXC
 - microSD and reduced form factor media
 - Supports storage addressability of up to 2TB
- MultiMediaCard 4.2
 - 1/4/8 bit
- Includes support for eMMC devices
- Control of I²C device using the I²C over USB bridge
- · Supports internal regulator for 1.8 V core operation
- · Supports external regulator for 1.8 V core operation

1.2.2 CONFIGURABLE FEATURES

Default configuration is loaded by USB2642 following a reset. The USB2642 may also be configured by an external I²C EEPROM or external SPI ROM flash, where the following features are supported:

- · Customizable vendor ID, product ID, and device ID
- · 12-hex digits maximum for the serial number string
- · 29-character manufacturer ID and product strings for flash media reader/writer
- Compound device support on a port-by-port basis a port is permanently hardwired to a downstream USB peripheral device
- Select over-current sensing and port power control on an individual or ganged (all ports together) basis to match the circuit board component selection
- · Port power control and over-current detection/delay features
- · Configure the delay time for filtering the over-current sense inputs
- · Configure the delay time for turning on downstream port power
- · Bus- or self-powered selection
- · Hub port disable of non-removable configurations
- Flexible port mapping and disable sequencing supports multiple platform designs
- Programmable USB differential-pair pin location selection eases PCB layout by aligning USB signal lines directly to connectors
- · Programmable USB signal drive strength improves USB signal integrity using 4 levels of signal drive strength
- · Indicate the maximum current that the 2-port hub consumes from the USB upstream port
- · Manage the maximum current required for the hub controller

2.0 BLOCK DIAGRAM

DS00001578C-page 6

3.0 USB2642 PIN CONFIGURATION

FIGURE 3-1: USB2642 48-PIN QFN - TOP VIEW

4.0 PIN TABLE

Secure Digital (12 pins)					
SD_D7	SD_D6	SD_D5	SD_D4		
SD_D3	SD_D2	SD_D1	SD_D0		
SD_CLK	SD_CMD	SD_nCD	SD_WP		
	USB 2.0 Inte	rface (10 pins)			
USBUP_DP	USBUP_DM	XTAL1 (CLKIN)	XTAL2		
RBIAS	(3) VDDA33	VDD18PLL	REG_EN		
	2-PORT USB I	nterface (7 pins)			
USBDN_DP2	USBDN_DM2	PRTCTL2	PRTCTL3		
USBDN_DP3	USBDN_DM3	VBUS_DET	-		
	SPI Interf	ace (4 pins)			
SPI_CE_N	SPI_CLK/ SCL_EP	SPI_DO/ SDA_EP/ SPI_SPD_SEL	SPI_DI		
	I ² C Interfa	ace (2 pins)			
SCL	SDA				
	MISC	(7 pins)			
RESET_N	TEST0	TEST1	TEST2		
GPO1	CRD_PWR	(1) NC			
	POWEI	R (6 pins)			
(4) VDD33	VDD33	VDD18			
Total 48					

TABLE 4-1: USB2642 48-PIN TABLE (GROUPED BY FUNCTION)

5.0 PIN DESCRIPTIONS

This section provides a detailed description of each signal. The signals are arranged in functional groups according to their associated interface. The pin descriptions below are applied when using the internal default firmware and can be referenced in Section 7.0, Configuration Options. The acronyms used in this chapter can be referenced in Appendix A: "Acronyms".

An *N* at the end of a signal name indicates that the active (asserted) state occurs when the signal is at a low voltage level. When the *N* is not present, the signal is asserted when it is at a high voltage level. The terms assertion and negation are used exclusively in order to avoid confusion when working with a mixture of active low and active high signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

5.1 USB2642 Pin Description

Symbol	48-Pin QFN	Buffer Type	Description	
			Secure Digital Interface	
SD_D[7:0]	19 20 23 30 32 33 17 18	I/O12PU	Secure Digital Data 7-0 These are the bi-directional data signals SD_D0 - SD_D7 Note: The pull up resistance is a current source that is limited to VDD.	
SD_CLK	21	O12	Secure Digital Clock This is an output clock signal to SD/MMC device.	
SD_CMD	24	I/O12PU	Secure Digital Command This is a bi-directional signal that connects to the CMD signal of the SD/ MMC device.	
SD_nCD	14	I/O12PU	Secure Digital Card Detect	
SD_WP	13	I/O12	Secure Digital Write Protect	
			I ² C Interface	
SDA	29	I/O12	Serial Data Signal	
SCL	36	I/O12	Serial Clock	
			USB Interface	
USBUP_DM USBUP_DP	43 42	I/O-U	USB Bus Data These pins connect to the upstream USB bus data signals (host port or upstream hub). USBUP_DM and USBUP_DP can be swapped using the PortSwap feature.	
USBDN_DM [3:2] USBDN_DP [3:2]	3 1 4 2	I/O-U	USB Bus Data These pins connect to the downstream USB bus data signals and can be swapped using the PortSwap feature.	

TABLE 5-1: USB2642 PIN DESCRIPTIONS

TABLE 5-1: USB2642 PIN DESCRIPTIONS

Symbol	48-Pin QFN	Buffer Type	Description	
PRTCTL[3:2]	7	I/OD12PU	USB Power Enable	
	6		As an output, these pins enables power downstream USB peripheral devices. See Section 5.3, "Port Power Control" for diagram and usage instructions.	
			As an input, when the power is enabled, these pins monitor the over- current condition. When an over-current condition is detected, these pi turn the power off.	
VBUS_DET	39	I	Detect Upstream VBUS Power	
			The Microchip hub monitors VBUS_DET to determine when to assert the internal D+ pull-up resistor (signaling a connect event).	
			When designing a detachable hub, connect this pin to the VBUS power pin of the USB port that is upstream of the hub.	
			For self-powered applications with a permanently attached host, this pin should be pulled up, typically to VDD33.	
			VBUS is a 3.3 volt input. A resistor divider must be used when conne to 5 volts of USB power.	
RBIAS	47	I-R	USB Transceiver Bias	
			A 12.0 k Ω , ±1.0% resistor is attached from VSS to this pin in order to set the transceiver's internal bias currents.	
XTAL1 (CLKIN)	45	ICLKx	24 MHz Crystal Input/External Clock Input	
			This pin can be connected to one terminal of the crystal or it can be connected to an external 24 MHz clock when a crystal is not used.	
XTAL2	44	OCLKx	24 MHz Crystal Output	
			This is the other terminal of the crystal, or a no connect pin, when an external clock source is used to drive XTAL1 (CLKIN).	
VDD18PLL	46	-	1.8 V PLL Power Bypass	
			This pin is the 1.8 V power bypass for the PLL. This pin requires an external bypass capacitor of 1.0 $\mu\text{F}.$	
			If REG_EN is low, this pin serves as a power supply (1.8 V) for the device.	
VDDA33	5	-	3.3 V Analog Power	
	41		 48QFN - Pin 48 requires an external bypass capacitor of 4.7 μF. 	
		1	SPI Interface	
SPI_CE_N	8	012	SPI Chip Enable	
			This is the active low chip enable output. If the SPI interface is enabled, drive this pin high in power down states.	
SPI_CLK/	9	I/O12	SPI Clock	
			This is the SPI clock out to the serial ROM. See Section 5.4, "ROM Boot Sequence" for diagram and usage instructions.	
			During reset, this pin is driven low.	
SCL_EP			When configured, this is the I ² C EEPROM clock pin.	

TABLE 3-1: USB2042 PIN DESCRIPTIONS	TABLE 5-1:	USB2642 PIN DESCRIPTIONS
-------------------------------------	------------	---------------------------------

Symbol	48-Pin QFN	Buffer Type	Description
SPI_DO/	10	I/O12	SPI Data Out
			This is the data out for the SPI port. See Section 5.4, "ROM Boot Sequence" for diagram and usage instructions.
SDA_EP			This pin is the data pin when the device is connected to the optional I ² C EEPROM.
SPI_SPD_SEL			This pin is used to pick the speed of the SPI interface. During RESET_N assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When RESET_N is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality. Additionally, the internal pull-down will be disabled.
			0 : 30 MHz 1 : 60 MHz
			If the latched value is 1, then the pin is tri-stated when the chip is in the suspend state.
			If the latched value is 0, then the pin is driven low during a suspend state.
SPI_DI	11	I/O12PD	SPI Data In
			This is the data in to the controller from the SPI ROM.
			Misc
GPO1	37	I/O12	This general purpose pin is set to be used as an output.
CRD_PWR	35	I/O200	Card power drive: 3.3 V (200 mA)
			This pin powers the multiplexed flash media interface (slot) for the SD/ MMC interface.
			Bits 0, 1, 2, and 3 control FET 2 of Register A5h. See Section 7.4.2.11, "A4h-A5h: LUN 0 Power Configuration," on page 26 for more information.
NC	31	IPU	
REG_EN	22	IPU	Regulator Enable
			This pin is internally pulled up to enable the internal 1.8 V regulators. In order to disable the regulators, this pin will need to be externally connected to ground.
			When the internal regulator is enabled, the 1.8 V power pins must be left unconnected, except for the required bypass capacitors.
RESET_N	38	I	RESET input
			This active low signal is used by the system to reset the chip. The active low pulse should be at least 1 μs wide.
TEST[2:0]	28	IPD	TEST Input
	27 40		Tie these test pins to ground for normal operation.
			Digital/Power/Ground
VDD18	15	-	1.8 V Digital Core Power Bypass
			This pin requires an external bypass capacitor of 1.0 µF.
			If REG_EN is low, this pin serves as a power supply (1.8 V) for the device.
VDD33	12	-	3.3 V Power and Regulator Input
	16 25 34		 48QFN - Pin 16 requires an external bypass capacitor of 4.7 μF mini- mum.
VDD33 (OTP)	26	-	3.3 V Power

Symbol	48-Pin QFN	Buffer Type	Description
VSS	ePad	-	Ground Pad
			The ground pad is the only VSS for the device and must be tied to ground with multiple vias.

TABLE 5-1: USB2642 PIN DESCRIPTIONS

5.2 Buffer Type Descriptions

TABLE 5-2:	USB2642 BUFFER TYPE DESCRIPTIONS

Buffer	Description
I	Input
IPU	Input with weak internal pull-up
IS	Input with Schmitt trigger
I/O12	Input/output buffer with 12 mA sink and 12 mA source
I/O200	Input/output buffer 12 mA with FET disabled, 100/200 mA source only when the FET is enabled
I/O12PD	Input/output buffer with 12 mA sink and 12 mA source, with an internal weak pull-down resistor
I/O12PU	Open drain, 12 mA sink with pull-up. Input with Schmitt trigger
I/OD12PU	Input/open drain output buffer with a 12 mA sink
O12	Output buffer with a 12 mA sink and a 12 mA source
ICLKx	XTAL clock input
OCLKx	XTAL clock output
I/O-U	Analog input/output defined in USB Specification (Appendix B)
I-R	RBIAS

5.3 Port Power Control

5.3.1 PORT POWER CONTROL USING USB POWER SWITCH

The USB2642 has a single port power control and over-current sense signal for each downstream port. When disabling port power, the driver will actively drive a 0. To avoid unnecessary power dissipation, the internal pull-up resistor will be disabled at that time. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled creating an open drain output.

If there is an over-current situation, the USB Power Switch will assert the open drain OCS signal. The Schmitt trigger input will detect this event as a low. The open drain output does not interfere. The over-current sense filter handles the transient conditions, such as low voltage, while the device is powering up.

FIGURE 5-1: PORT POWER CONTROL WITH USB POWER SWITCH

5.3.2 PORT POWER CONTROL USING A POLY FUSE

When using the USB2642 with a poly fuse, an external diode must be used (see Figure 5-2). When disabling port power, the USB2642 driver will drive a 0. This procedure will have no effect since the external diode will isolate the pin from the load. When port power is enabled, the USB2642 output driver is disabled, and the pull-up resistor is enabled which creates an open drain output. This means that the pull-up resistor is providing 3.3 volts to the anode of the diode. If there is an over-current situation, the poly fuse will open. This will cause the cathode of the diode to go to zero volts. The anode of the diode will be at 0.7 volts, and the Schmitt trigger input will register this as a low resulting in an over-current detection. The open drain output does not interfere.

FIGURE 5-2: PORT POWER CONTROL WITH SINGLE POLY FUSE AND MULTIPLE LOADS

When using a single poly fuse to power all devices, note that for the ganged situation, all power control pins must be tied together.

FIGURE 5-3: PORT POWER WITH GANGED CONTROL WITH POLY FUSE

5.4 ROM Boot Sequence

After power-on reset, the internal firmware checks for an external SPI flash device that contains a valid signature of 2DFU (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM is enabled and code execution begins at address 0x0000 in the external SPI device. Otherwise, code execution continues from the internal ROM.

The SPI ROM required for the USB2642 is a recommended minimum of 1 Mbit and support 60 MHz. The frequency used is set using the SPI_SPD_SEL. For 60 MHz operation, this pin must pulled up through a 100 k Ω resistor. SPI_SP-D_SEL is used to choose the speed of the SPI interface. During RESET_N assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When RESET_N is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality, and the internal pull-down is disabled.

The firmware can determine the speed of operation on the SPI port by checking the **SPI_SPEED** in the SPI_CTL Register (0x2400 - RESET = 0x02). Both 1- and 2-bit SPI operation is supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI ROMS are also supported.

FIGURE 5-4: SPI ROM CONNECTION

6.0 PIN RESET STATES

TABLE 6-1: LEGEND FOR PIN RESET STATES

Symbol	Description
0	Output driven low
1	Output driven high
IP	Input enabled
PU	Hardware enables pull-up
PD	Hardware enables pull-down
none	Hardware disables pad
-	Hardware disables function
Z	Hardware disables pad. Both output driver and input buffers are disabled.

6.1 Pin Reset States

TABLE 6-2: USB2642 RESET STATES

		Reset State			
Pin	Pin Name	Function	Input/ Output	PU/ PD	
1	USBDN_DM2	USBDN_DM2	IP	PD	
2	USBDN_DP2	USBDN_DP2	IP	PD	
3	USBDN_DM3	USBDN_DM3	IP	PD	
4	USBDN_DP3	USBDN_DP3	IP	PD	
6	PRTCTL2	PRTCTL	0	-	
7	PRTCTL3	PRTCTL	0	-	
8	SPI_CE_N	SPI_CE_N	1	-	
9	SPI_CLK/SCL_EP	Ю	0	-	
10	SPI_DO/SDA_EP/SPI_SPD_SEL	Ю	0	-	
11	SPI_DI	SPI_DI	IP	PD	
13	SD_WP	Ю	0	-	
14	SD_nCD	Ю	IP	PU	
17	SD_D1	none	Z	-	

TABLE 6-2: USB2642 RESET STATES (CONTINUED)

		Reset State			
Pin	Pin Name	Function	Input/ Output	PU/ PD	
18	SD_D0	none	Z	-	
19	SD_D7	none	Z	-	
20	SD_D6	none	Z	-	
21	SD_CLK	none	Z	-	
22	REG_EN	none	IP	PU	
23	SD_D5	none	Z	-	
24	SD_CMD	none	Z	-	
27	TEST1	none	Z	-	
28	TEST2	none	Z	-	
29	SDA	Ю	IP	PU	
30	SD_D4	none	Z	-	
31	NC	GPIO	IP	PU	
32	SD_D3	none	Z	-	
33	SD_D2	none	Z	-	
35	CRD_PWR	Ю	Z	-	
36	SCL	Ю	0	-	
37	GPO1	GPO	0	-	
38	RESET_N	RESET_N	IP	-	
39	VBUS_DET	VBUS_DET	IP	-	
40	TESTO	TEST	IP	PD	
42	USBUP_DP	USBUP_DP	Z	-	
43	USBUP_DM	USBUP_DM	Z	-	

7.0 CONFIGURATION OPTIONS

7.1 Hub

Microchip's USB2642 hub is fully compliant with the *Universal Serial Bus 2.0 Specification* (References). See Chapter 11 (Hub Specification) for general details regarding hub operation and functionality.

The hub provides a single Transaction Translator (TT) shared by both downstream ports. The TT contains 4 non-periodic buffers.

7.1.1 HUB CONFIGURATION OPTIONS

The Microchip hub supports a large number of configurable features (some are mutually exclusive). There are two principal ways to configure the hub:

- default settings
- · settings loaded from an external EEPROM or SPI Flash device

7.1.1.1 Power Switching Polarity

The hub will only support active high power controllers.

7.1.2 VBUS DETECT

According to Section 7.2.1 of the USB 2.0 Specification, a downstream port can never provide power to its D+ or D- pullup resistors unless the upstream port's VBUS is in the asserted (powered) state. The VBUS_DET pin on the hub monitors the state of the upstream VBUS signal and will not pull-up the D+ resistor if VBUS is not active. If VBUS goes from an active to an inactive state (not powered), the hub will remove power from the D+ pull-up resistor within 10 seconds.

7.2 Card Reader

The Microchip USB2642 is fully compliant with the following flash media card reader specifications:

- Secure Digital 2.0
 - SDSC, SDHC, and SDXC
 - mircoSD and reduced form factor media
 - Supports storage addressability of up to 2TB
- MultiMediaCard 4.2
 - 1/4/8 bit
 - includes support for eMMC devices

7.3 I²C over USB Bridge

USB2642 offers a I²C over USB bridge functionality. Host initiated SCSI pass-through commands are sent to USB2642 using Mass Storage Class driver to control I²C master interface. Additional support for detecting clock stretching during reads is also provided.

The following features are exposed through host side I²C API:

- Write_I2C_Stream
 Send any length of data over the I²C interface.
 The sequence follows the I²C protocol for writing data.
- WriteRead_I2C_Stream Read any length of data over the I²C interface. The sequence follows the I²C protocol for reading data.
- GPIO_1_SET_OUTPUT This method allows an application to assert GPO1 pin. This can be driving RST of the I²C slave device.

For additional configuration information and protocol details, see "USB2642 I²C Over USB Bridge User's Guide".

7.4 System Configurations

7.4.1 EEPROM/SPI INTERFACE

The USB2642 can be configured via a 2-wire (I^2C) EEPROM (512x8) or an external SPI flash device containing the firmware for the USB2642. If an external configuration device does not exist the internal default values will be used. If one of the external devices is used for configuration, the OEM can update the values through the USB interface. The hub will then attach to the upstream USB host.

The USBDM tool set is available in the Hub Card reader combo software release package.

7.4.2 EEPROM DATA DESCRIPTOR

TABLE 7-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
00h-19h	USB_SER_NUM	USB Serial Number	000008264001 (Unicode)
1Ah-1Bh	USB_VID	USB Card Reader Vendor ID	0424
1Ch-1Dh	USB_PID	USB Card Reader Product ID	4041
1Eh-21h	USB_LANG_ID	USB Language Identifier	0409 (see Note 1)
22h-5Dh	USB_MFR_STR	USB Manufacturer String	Generic (Unicode)
5Eh-99h	USB_PRD_STR	USB Product String	Ultra Fast Media Reader (Unicode)
9Ah	USB_BM_ATT	USB BmAttribute	80h
9Bh	USB_MAX_PWR	USB Max Power	30h (96 mA)
9Ch	ATT_LB	Attribute Lo byte	40h (Reverse SD_WP only)
9Dh	ATT_HLB	Attribute Hi Lo byte	80h (Reverse SD2_WP only)
9Eh	ATT_LHB	Attribute Lo Hi byte	00h
9Fh	ATT_HB	Attribute Hi byte	00h
A0h-A3h	rsvd		
A4h	LUN_PWR_LB	LUN Power Lo byte	00h
A5h	LUN_PWR_HB	LUN Power Hi byte	0Ah
A6h-BEh	rsvd		
BFh-C5h	DEV3_ID_STR	Device 3 Identifier String	SD/MMC
C6h-CDh	INQ_VEN_STR	Inquiry Vendor String	Generic
CEh-D2h	INQ_PRD_STR	48QFN Inquiry Product String	2642
D3h	DYN_NUM_LUN	Dynamic Number of LUNs	01h
D4h-D7h	LUN_DEV_MAP	LUN to Device Mapping	FFh, 00h, 00h, 00h
D8h-DAh	rsvd		

Address	Register Name	Description	Internal Default Value	
DBh-DDh	SD_MMC_BUS_TIMING	SD/MMC Bus Timing Control	59h, 56h, 97h (Note 2)	
	Refer to Table 7-2, "Hub C for a continuation of	Controller Configurations," on p the register values DEh-17Ft	bage 22 I.	
	Internal Flash Media Co The registers below are en	nabled by setting bit 7 of bmA	ttions: ttribute.	
100h-106h	CLUN0_ID_STR	LUN 0 Identifier String	СОМВО	
107h-10Dh	CLUN1_ID_STR	LUN 1 Identifier String	СОМВО	
10Eh-114h	CLUN2_ID_STR	LUN 2 Identifier String	СОМВО	
115h-11Bh	CLUN3_ID_STR	LUN 3 Identifier String	СОМВО	
11Ch-122h	CLUN4_ID_STR	LUN 4 Identifier String	СОМВО	
123h-129h	rsvd			
12Ah-145h rsvd				
146h DYN_NUM_ EXT_LUN		Dynamic Number of Extended LUNs	00h	
147h-14Bh	LUN_DEV_MAP	LUN to Device Mapping	FFh, FFh, FFh, FFh, FFh	
14Ch-17Bh	rsvd			
17Ch-17Fh	NVSTORE_SIG2	Non-Volatile Storage Signature	ecf1	

TABLE 7-1: INTERNAL FLASH MEDIA CONTROLLER CONFIGURATIONS (CONTINUED)

Note that the following applies to the system values and descriptions:

• rsvd = reserved for internal use; do not write to these registers

Note 1: Refer to the USB 2.0 Specification (References) for other language codes.

2: This register value must not be changed from the default value.

Address	Register Name	Description	Internal Default Value
DEh	VID_LSB	Vendor ID Least Significant Byte	24h
DFh	VID_MSB	Vendor ID Most Significant Byte	04h
E0h	PID_LSB	48QFN Product ID Least Significant Byte	40h
E1h	PID_MSB	Product ID Most Significant Byte	26h
E2h	DID_LSB	Device ID Least Significant Byte	A2h
E3h	DID_MSB	Device ID Most Significant Byte	08h
E4h	CFG_DAT_BYT1	Configuration Data Byte 1	8Bh
E5h	CFG_DAT_BYT2	Configuration Data Byte 2	28h
E6h	CFG_DAT_BYT3	Configuration Data Byte 3	00h
E7h	NR_DEVICE	Non-Removable Devices	02h
E8h	PORT_DIS_SP	Port Disable (Self)	00h
E9h	PORT_DIS_BP	Port Disable (Bus)	00h
EAh	MAX_PWR_SP	Max Power (Self)	01h
EBh	MAX_PWR_BP	Max Power (Bus)	32h
ECh	HC_MAX_C_SP	Hub Controller Max Current (Self)	01h
EDh	HC_MAX_C_BP	Hub Controller Max Current (Bus)	32h
EEh	PWR_ON_TIME	Power-on Time	32h
EFh	BOOST_UP	Boost_Up	00h
F0h	BOOST_3:2	Boost_3:2	00h
F1h	PRT_SWP	PortSwap	00h
F2h	PRTM12	PortMap 12	00h
F3h	PRTM3	PortMap 3	00h

TABLE 7-2: HUB CONTROLLER CONFIGURATIONS

TABLE 7-3: OTHER INTERNAL CONFIGURATIONS

Address	Register Name	Description	Internal Default Value
F4h	SD_CLK_LIM	SD Clock Limit for the Flash Media Controller	00h
F5h	rsvd		
F6h	MEDIA_SETTINGS	SD1 Timeout Configuration	00h
F7h-FBh	rsvd		
FCh-FFh	NVSTORE_SIG	Non-Volatile Storage Signature	ATA2

7.4.2.1 00h-19h: USB Serial Number Option

Byte	Name	Description
25:0	USB_SER_NUM	Maximum string length is 12 hex digits. Must be unique to each device.

7.4.2.2 1Ah-1Bh: USB Vendor Identifier Option

Byte	Name	Description
1:0	USB_VID	This ID is unique for every vendor, where the vendor ID is assigned by the USB Implementer's Forum.

7.4.2.3 1Ch-1Dh: USB Product Identifier Option

Byte	Name	Description
1:0	USB_PID	This ID is unique for every product, where the product ID is assigned by the vendor.

7.4.2.4 1Eh-21h: USB Language Identifier Option

Byte	Name	Description
3:0	USB_LANG_ID	English language code = 0409

7.4.2.5 22h-5Dh: USB Manufacturer String Length

Byte	Name	Description
59:0	USB_MFR_STR	Maximum string length is 29 characters.

7.4.2.6 5Eh-99h: USB Product String Length

Byte	Name	Description
59:0	USB_PRD_STR	This string is used during the USB enumeration process by Windows $^{\ensuremath{\mathbb{R}}}$. The maximum string length is 29 characters.

7.4.2.7 9Ah: USB BmAttribute (1 byte)

Bit	Name	Description
7:0	USB_BM_ATT	Self- or Bus-Power: Selects between self- and bus-powered operation. The hub is either self-powered (draws less than 2 mA of upstream bus power) or bus-powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller). When configured as a bus-powered device, the Microchip hub consumes less than 100 mA of current prior to being configured. After configuration, the bus- powered Microchip hub (along with all associated hub circuitry, any embed- ded devices if part of a compound device, and 100 mA per externally avail- able downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated. When configured as a self-powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current. 80 = Bus-powered operation C0 = Self-powered operation A0 = Bus-powered operation with remote wake-up E0 = Self-powered operation with remote wake-up

7.4.2.8 9Bh: USB MaxPower (1 byte)

Bit	Name	Description
7:0	USB_MAX_PWR	USB Max Power per USB Specification (References). Do NOT set this value greater than 100 mA.

7.4.2.9 9Ch-9Fh: Attribute Byte Descriptions

Byte	Name	Bit Number	Description
0	ATT_LB	3:0	Always read as 0
		4	Inquire Manufacturer and Product ID Strings
			 1 : use the Inquiry Manufacturer and Product ID Strings. 0 : (default) - use the USB Descriptor Manufacturer and Product ID Strings.
		5	Always read as 0
		6	Reverse SD Card Write Protect Sense
			ı : (default) - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			0 : SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high.
		7	Always read as 0
1	ATT_HLB	3:0	Always read as 0
		4	Activity LED True Polarity
			 1 : Activity LED to Low True 0 : (default) Activity LED polarity to High True
		5	Common Media Insert/Media Activity LED
			1 : the activity LED will function as a common media inserted/media access LED.
			0 : (default) the activity LED will remain in its idle state until media is accessed.
		6	Always read as 0
		7	Reverse SD2 Card Write Protect Sense
			1 : (default) SD cards in LUN 1 will be write protected when SW_nWP is high, and writable when SW_nWP is low.
			0 : SD cards in LUN 1 will be write protected when SW_nWP is low, and writable when SW_nWP is high.
2	ATT_LHB	0	Attach on Card Insert/Detach on Card Removal
			 1 : attach on Insert is enabled 0 : (default) - attach on Insert is disabled
		1	Always read as 0
		2	Use LUN Power Configuration
			 1 : custom LUN Power Configuration stored in the NVSTORE is used 0 : (default) - default LUN Power Configuration is used.
		7:3	Always read as 0
3	ATT_HB	7:0	Always read as 0