imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

USB4715

USB 2.0 Hi-Speed Hub Controller with FlexConnect on all Ports

Highlights

- Single-chip USB 2.0 Hi-Speed hub controller with FlexConnect
 - 1 upstream port for USB Host / OTG connection
 - 4 downstream ports with FlexConnect capability on all ports
- USB Battery Charging, revision 1.2, support on downstream ports (DCP, CDP, SDP)
- Battery charging support for China and Apple[®] profiles
- USB to SMBus, I²S[™], SPI, UART, and GPIO
 - Apple authentication support
 - I²S for audio support; Asynchronous In, Adaptive Out, 48KHz, two channels, 16-bits/channel
 - Flexible I²S capabilities with firmware update

Target Applications

- Media hubs
- Infotainment head units
- Automotive breakout boxes
- Docks
- Monitors
- Point of sale
- · Host switch for diagnostic mode
- · Host switch for field firmware upgrades

Product Features

FlexConnect

Downstream port able to swap with upstream port, allowing USB host capable devices to control other devices on the hub

- MultiTRAK[™]
 - Dedicated Transaction Translator per port
- PortMap
 - Configurable port mapping and disable sequencing
- PortSwap
 - Configurable differential intra-pair signal swapping
- PHYBoost
 - Programmable USB transceiver drive strength for recovering signal integrity
- VariSense[™]
 - Programmable USB receiver sensitivity
- · USB Link Power Management (LPM) support
- · Vendor Specific Messaging (VSM) support
- Architected for USB Power Delivery (PD) 3.0 support
 - 32-bit embedded microcontroller in the hub executes PD stack and system policy manager
 - Interfaces to Microchip UPD350 Power Delivery Interface device
 - Power delivery stack runs from external SPI Flash
 - SPI Flash provides flexibility for specification revisions and evolving system needs
- Enhanced OEM configuration options available through external straps, OTP configuration or SMBus Slave port
- 3.3 V supply voltage
- AEC-Q100 compliance
 - Microchip parts are tested to meet or exceed the requirements of the AEC-Q100 automotive qualification standards
- · Packaging
 - 48-pin VQFN (7 x 7 mm)
- Environmental
 - Commercial temperature range (0°C to +70°C)
 - Industrial temperature range (-40° to +85°C)
 - Grade 3 Automotive temperature range (-40° to +85°C)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 PREFACE

1.1 General Terms

TABLE 1-1: GENERAL TERMS

Term	Description
ADC	Analog-to-Digital Converter
Byte	8 bits
CDC	Communication Device Class
EOP	End of Packet
EP	Endpoint
FIFO	First In First Out buffer
FS	Full-Speed
GPIO	General Purpose I/O
HS	Hi-Speed
Hub Feature Controller	The Hub Feature Controller, sometimes called a Hub Controller for short is the internal processor used to enable the unique features of the USB Controller Hub. This is not to be confused with the USB Hub Controller that is used to communicate the hub status back to the Host during a USB session.
l ² C	Inter-Integrated Circuit
LS	Low-Speed
lsb	Least Significant Bit
LSB	Least Significant Byte
msb	Most Significant Bit
MSB	Most Significant Byte
N/A	Not Applicable
NC	No Connect
ОТР	One Time Programmable
РСВ	Printed Circuit Board
РНҮ	Physical Layer
PLL	Phase Lock Loop
RESERVED	Refers to a reserved bit field or address. Unless otherwise noted, reserved bits must always be zero for write operations. Unless otherwise noted, values are not guaran- teed when reading reserved bits. Unless otherwise noted, do not read or write to reserved addresses.
SDK	Software Development Kit
SMBus	System Management Bus
UUID	Universally Unique IDentifier
WORD	16 bits

1.2 Buffer Types

TABLE 1-2: BUFFER TYPE DESCRIPTIONS

Buffer	Description
1	Input.
IS	Input with Schmitt trigger.
04	Output buffer with 4mA sink and 4mA source.
012	Output buffer with 12mA sink and 12mA source.
OD12	Open-drain output with 12mA sink.
PU	Internal pull-up. Unless otherwise noted in the pin description, internal pull-ups are always enabled.
	Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled high, an external resistor must be added.
PD	Internal pull-down. Unless otherwise noted in the pin description, internal pull-downs are always enabled.
	Internal pull-down resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled low, an external resistor must be added.
ICLK	Crystal oscillator input pin.
OCLK	Crystal oscillator output pin.
I/O-U	Analog input/output defined in USB specification.
I-R	RBIAS.
A	Analog.
Р	Power pin.

1.3 Pin Reset States

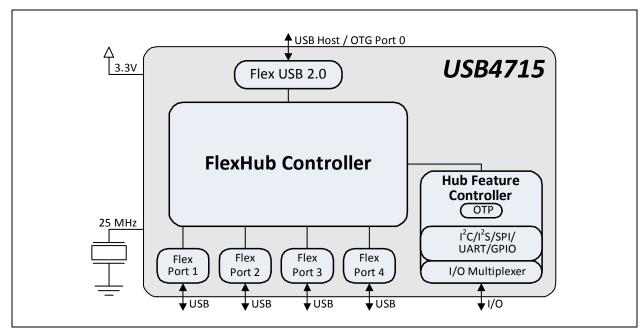
The pin reset state definitions are detailed in Table 1-3. Refer to Section 3.0, "Pin Descriptions and Configuration" for details on individual pin reset states.

TABLE 1-3: PIN RESET STATE LEGEND

Symbol	Description
A/P	Analog/Power Input
Z	Hardware disables output driver (high impedance)
PD-15k	Hardware enables internal $15k\Omega$ pull-down
PD-67k	Hardware enables internal $67k\Omega$ pull-down
PU-67k	Hardware enables internal $67k\Omega$ pull-up
USB	USB line

1.4 Reference Documents

- 1. Universal Serial Bus Revision 2.0 Specification, http://www.usb.org
- 2. AN2341 USB4715 FlexConnect Operation, http://www.microchip.com
- 3. AN2439 Configuration of the USB491x/USB492x/USB4715, http://www.microchip.com
- 4. AN2437 USB to GPIO Bridging with USB4715 and USB49xx, http://www.microchip.com
- 5. AN2438 USB to I²C Bridging with USB4715 and USB49xx, http://www.microchip.com
- 6. AN2430 USB to SPI Bridging with USB4715 and USB49xx, http://www.microchip.com
- 7. AN2426 USB to UART Bridging with Microchip USB4715, USB4916, and USB4927, http://www.microchip.com
- 8. Battery Charging Specification, Revision 1.2, Dec. 07, 2010, http://www.usb.org
- 9. I²C-Bus Specification, Version 1.1, http://www.nxp.com/documents/user_manual/UM10204.pdf
- 10. I²S-Bus Specification, http://www.nxp.com/acrobat_download/various/I2SBUS.pdf
- 11. System Management Bus Specification, Version 1.0, http://smbus.org/specs


2.0 INTRODUCTION

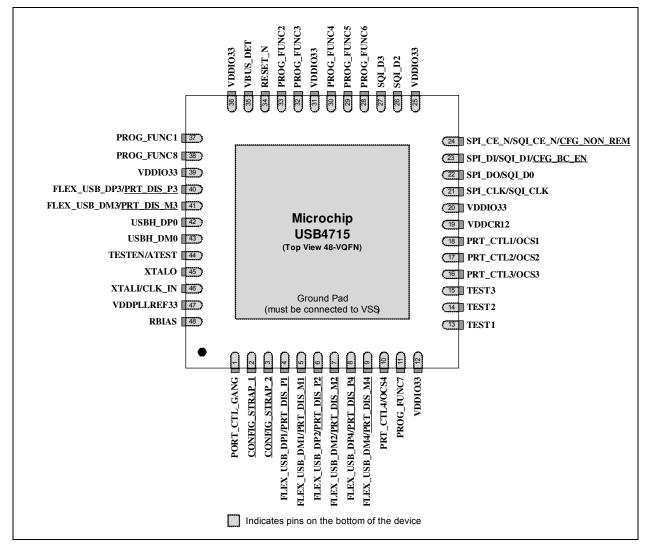
2.1 General Description

The Microchip USB4715 USB 2.0 Hi-Speed hub controller is a single-chip device targeted for automotive, industrial, and commercial applications. Primary functions of the device include: multiple downstream USB ports supporting USB 2.0 Low Speed/Full Speed, single USB 2.0 Hi-Speed upstream connection to a USB host / OTG port, battery charging support for BC1.2, Apple and China charging profiles, USB I/O bridging, and an on-chip microcontroller.

The USB4715 employs unique FlexConnect USB functionality, whereby one of the downstream ports can be reconfigured to become an upstream port, allowing the host or master capability to be switched to equipment on any of the other ports. This port/host becomes the master of the new USB bus, while the other ports can connect as USB devices, or become dedicated charging ports.

The USB4715 is available in commercial (0°C to +70°C), industrial and Automotive Grade 3 (-40°C to +85°C) temperature ranges. An internal block diagram of the USB4715 is shown in Figure 2-1.

FIGURE 2-1: INTERNAL BLOCK DIAGRAM


3.0 PIN DESCRIPTIONS AND CONFIGURATION

The pin assignments for the USB4715 are detailed in Section 3.1, "USB4715 Pin Assignments". Pin descriptions are provided in Section 3.2, "Pin Descriptions".

3.1 USB4715 Pin Assignments

The device pin diagram for the USB4715 can be seen in Figure 3-1. Table 3-1 provides a USB4715 pin assignments table. Pin descriptions are provided in Section 3.2, "Pin Descriptions".

Note: Configuration straps are identified by an underlined symbol name. Signals that function as configuration straps must be augmented with an external resistor when connected to a load.

Pin	Pin Name	Reset	Pin	Pin Name	Reset
1	PORT_CTL_GANG	PD-67k	25	VDDIO33	A/P
2	CONFIG STRAP 1	Z	26	SQI_D2	Z
3	CONFIG STRAP 2	Z	27	SQI_D3	Z
4	FLEX_USB_DP1/ <u>PRT_DIS_P1</u>	PD-15k	28	PROG_FUNC6	Z
5	FLEX_USB_DM1/PRT_DIS_M1	PD-15k	29	PROG_FUNC5	Z
6	FLEX_USB_DP2/ <u>PRT_DIS_P2</u>	PD-15k	30	PROG_FUNC4	Z
7	FLEX_USB_DM2/PRT_DIS_M2	PD-15k	31	VDDIO33	A/P
8	FLEX_USB_DP4/ <u>PRT_DIS_P4</u>	PD-15k	32	PROG_FUNC3	Z
9	FLEX_USB_DM4/PRT_DIS_M4	PD-15k	33	PROG_FUNC2	Z
10	PRT_CTL4/OCS4	PD-67k	34	RESET_N	PD-67k
11	PROG_FUNC7	PD-67k	35	VBUS_DET	Z
12	VDDIO33	A/P	36	VDDIO33	A/P
13	TEST1	Z	37	PROG_FUNC1	Z
14	TEST2	Z	38	PROG_FUNC8	Z
15	TEST3	Z	39	VDDIO33	A/P
16	PRT_CTL3/OCS3	PD-67k	40	FLEX_USB_DP3/ <u>PRT_DIS_P3</u>	PD-15k
17	PRT_CTL2/OCS2	PD-67k	41	FLEX_USB_DM3/ <u>PRT_DIS_M3</u>	PD-15k
18	PRT_CTL1/OCS1	PD-67k	42	USBH_DP0	USB
19	VDDCR12	A/P	43	USBH_DM0	USB
20	VDDIO33	A/P	44	TESTEN/ATEST	A/P
21	SPI_CLK/SQI_CLK	Z	45	XTALO	A/P
22	SPI_DO/SQI_D0	PD-67k	46	XTALI/CLK_IN	A/P
23	SPI_DI/SQI_D1/ <u>CFG_BC_EN</u>	Z	47	VDDPLLREF33	A/P
24	SPI_CE_N/SQI_CE_N/ CFG_NON_REM	PU-67k	48	RBIAS	A/P
Exposed Pad (VSS) must be connected to ground.					

TABLE 3-1: USB4715 PIN ASSIGNMENTS

3.2 Pin Descriptions

TABLE 3-2:PIN DESCRIPTIONS

Name	Symbol	Buffer Type	Description			
_	USB Interface					
USB Upstream D+	USBH_DP0	I/O-U	Upstream USB 2.0 Data Plus (D+)			
USB Upstream D-	USBH_DM0	I/O-U	Upstream USB 2.0 Data Minus (D-)			
USB Downstream Ports 4-1 D+	FLEX_USB_DP[4:1]	I/O-U	Downstream USB 2.0 Ports 4-1 Data Plus (D+)			
USB Downstream Ports 4-1 D-	FLEX_USB_DM[4:1]	I/O-U	Downstream USB 2.0 Ports 4-1 Data Minus (D-)			
		USB Port C	Control Pins			
USB Ports 4-1 Power Enable	PRT_CTL[4:1]	I/O12	When the downstream port is enabled, this pin is set as an input with an internal pull-up resistor applied. The internal pull-up enables power to the downstream port while the pin monitors for an active low overcurrent sig- nal assertion from an external current monitor on USB port 4. This pin will change to an output and be driven low when the port is disabled by configuration or by the host control.			
USB Ports 4-1 Overcurrent Sense	OCS[4:1]	I/O12	Overcurrent sense for ports 4-1.			
Gang Power	PRT_CTL_GANG	I/O12	This pin becomes the port control pin for all downstream ports when the hub is configured for ganged port power control mode. All port power controllers are controlled from this pin when the hub is configured for ganged port power mode.			
		SPI Inter	face Pins			
SPI Clock	SPI_CLK	I/O4	SPI clock.			
SPI Data Out	SPI_DO	I/O4	SPI output data. If the SPI interface is enabled, this signal is the data out for the SPI port.			
SPI Data In	SPI_DI	I/O4	 SPI input data. If the SPI interface is enabled, this signal must have a weak pull-down applied at all times to prevent floating. Note: If SPI interface is not utilized, this pin cannot be left floating. It must be connected per the CFG_BC_EN pin description. 			

TABLE 3-2: PIN DESCRIPTIONS (CONTINUED)

Name	Symbol	Buffer Type	Description
SPI Chip Enable	SPI_CE_EN	I/O4	Active low SPI chip enable input. If the SPI interface is enabled, this pin must be driven high in powerdown states.
			Note: If SPI interface is not utilized, this pin cannot be left floating. It must be connected per the CFG_NON_REM pin description.
		SQI Inter	face Pins
SQI Clock	SQI_CLK	I/O4	SQI clock.
SQI Data 0-3	SQI_D[0:3]	I/O4	SQI Data 0-3. If the SQI interface is enabled, these signals function as Data 0 through 3.
SQI Chip Enable	SQI_CE_EN	I/O4	Active low SQI chip enable input. If the SQI interface is enabled, this pin requires an external pull-up resistor.
			Note: If SQI interface is not utilized, this pin cannot be left floating. It must be connected per the CFG_NON_REM pin description.
		Miscell	aneous
Programmable Functions 8-1	PROG_FUNC[8:1]	I/O12	These selectable function pins can be assigned a role via the <u>CONFIG STRAP [2:1]</u> pins, OTP configuration, or SMBus configuration. Refer to Section 3.3.4, "PROG_FUNC[8:1] Configuration (CON- FIG_STRAP_[2:1])" for additional information.
VBUS Detection	VBUS_DET	I	This signal detects the state of the upstream bus power. When designing a detachable hub, this pin must be connected to the VBUS power pin of the upstream USB port through a resistor divider (50 k Ω by 100 k Ω) to provide 3.3 V. For self-powered applications with a permanently attached host, this pin must be connected to either 3.3 V or 5.0 V through a resistor divider to provide 3.3 V. In embedded applications, VBUS_DET may be controlled (toggled) when the host desires to renegotiate a connection without requiring a full reset of the device.
Reset Input	RESET_N	I	This active low signal is used by the system to reset the device. The active low pulse should be at least 1 μs wide.
Bias Resistor	RBIAS	I-R	A 12.0 k $\Omega \pm 1.0\%$ resistor is attached from ground to this pin to set the transceiver's internal bias settings. Place the resistor as close to the device as possible with a dedicated, low impedance connection to the GND plane.
External 25 MHz Crystal Input	XTALI	ICLK	External 25 MHz crystal input.

Name	Symbol	Buffer Type	Description
External 25 MHz Reference Clock Input	CLK_IN	ICLK	External reference clock input. The device may alternatively be driven by a single- ended clock oscillator. When this method is used, XTALO should be left unconnected.
External 25 MHz Crystal Output	XTALO	OCLK	External 25 MHz crystal output.
Test	TESTEN	A	Test pin. This signal is used for test purposes and must always be connected to ground.
Analog Test	ATEST	A	Analog test pin. This signal is used for test purposes and must always be connected to ground.
Test 1	TEST1	A	Test 1 pin. This signal is used for test purposes and must always be pulled-up to $3.3V$ via a 4.7 k Ω resistor.
Test 2	TEST2	A	Test 2 pin. This signal is used for test purposes and must always be pulled-down to ground via a 4.7 k Ω resistor.
Test 3	TEST3	A	Test 3 pin. This signal is used for test purposes and must always be pulled-down to ground via a 4.7 k Ω resistor.
		Configurat	tion Straps
Device Mode Configuration Straps 2-1	CONFIG STRAP [2:1]	I	Device mode configuration straps 2-1. These configuration straps are used to select the device's mode of operation. See Note 3-1. Refer to Section 3.3.4, "PROG_FUNC[8:1] Configura- tion (CONFIG_STRAP_[2:1])" for additional information.
Port 4-1 D+ Disable Configuration Strap	<u>PRT DIS P[4:1]</u>	I	 Port 4-1 D+ Disable configuration strap. These configuration straps are used in conjunction with the corresponding <u>PRT DIS M[4:1]</u> straps to disable the related port (5-1). See Note 3-1. Both USB data pins for the corresponding port must be tied to 3.3V to disable the associated downstream port.

TABLE 3-2: PIN DESCRIPTIONS (CONTINUED)

Name	Symbol	Buffer Type	Description	
Port 4-1 D- Disable Configuration Strap	<u>PRT DIS M[4:1]</u>	I	Port 4-1 D- Disable configuration strap. These configuration straps are used in conjunction with the corresponding <u>PRT DIS P[4:1]</u> straps to disable the related port (5-1). See Note 3-1. Both USB data pins for the corresponding port must be tied to 3.3V to disable the associated downstream port.	
Non-Removable Ports Configuration Strap	CFG NON REM	I	Non-Removable Ports Configuration Strap. This configuration strap controls the number of reported non-removable ports. See Note 3-1.	
Battery Charging Configuration Strap	<u>CFG BC EN</u>	I	Battery Charging Configuration Strap. This configuration strap controls the number of BC 1.2 enabled downstream ports. See Note 3-1.	
	Power/Ground			
+3.3V I/O Power Supply Input	VDDIO33	Р	+3.3V I/O power supply input.	
+3.3V Analog Power Supply Input	VDDPLLREF33	Р	+3.3V master bias / PLL regulator supply input.	
+1.2V Core Power Supply Output	VDDCR12	Р	+1.2V digital core power supply output. Note: This signal requires connection of a 1uF low- ESR capacitor to ground.	
Ground	VSS	Р	Ground pins.	

Note 3-1 Configuration strap values are latched on Power-On Reset (POR) and the rising edge of **RESET_N** (external chip reset). Configuration straps are identified by an underlined symbol name. Signals that function as configuration straps must be augmented with an external resistor when connected to a load. For additional information, refer to Section 3.3, "Configuration Straps and Programmable Functions".

3.3 Configuration Straps and Programmable Functions

Configuration straps are multi-function pins that are used during Power-On Reset (POR) or external chip reset (**RESET_N**) to determine the default configuration of a particular feature. The state of the signal is latched following deassertion of the reset. Configuration straps are identified by an underlined symbol name. This section details the various device configuration straps and associated programmable pin functions.

Note: The system designer must guarantee that configuration straps meet the timing requirements specified in Section 9.6.2, "Power-On and Configuration Strap Timing" and Section 9.6.3, "Reset and Configuration Strap Timing". If configuration straps are not at the correct voltage level prior to being latched, the device may capture incorrect strap values.

3.3.1 PORT DISABLE CONFIGURATION (<u>PRT DIS P[4:1]</u> / <u>PRT DIS M[4:1]</u>)

The <u>PRT DIS P[4:1]</u> / <u>PRT DIS M[4:1]</u> configuration straps are used in conjunction to disable the related port (4-1).

For <u>**PRT DIS P**x</u> (where *x* is the corresponding port 4-1):

0 = Port *x* D+ Enabled

1 = Port *x* D+ Disabled

For <u>**PRT DIS M**</u>*x* (where *x* is the corresponding port 4-1):

0 = Port x D- Enabled

1 = Port *x* D- Disabled

Note: Both <u>**PRT DIS P**</u>*x* and <u>**PRT DIS M**</u>*x* (where *x* is the corresponding port) must be tied to 3.3 V to disable the associated downstream port.

3.3.2 NON-REMOVABLE PORT CONFIGURATION (CFG NON REM)

The <u>CFG NON REM</u> configuration strap is used to configure the non-removable port settings of the device to one of five settings. These modes are selected by the configuration of an external resistor on the <u>CFG NON REM</u> pin. The resistor options are a 200 k Ω pull-down, 200 k Ω pull-up, 10 k Ω pull-down, 10 k Ω pull-up, and 10 Ω pull-down, as shown in Table 3-3.

CFG NON REM Resistor Value	Setting
200 kΩ Pull-Down	Port 1- removable
200 kΩ Pull-Up	Port 1 non-removable
10 kΩ Pull-Down	Port 1, 2 non-removable
10 kΩ Pull-Up	Port 1, 2, 3 non-removable
10 Ω Pull-Down	Port 1, 2, 3, 4 non-removable

TABLE 3-3: CFG NON REM RESISTOR ENCODING

3.3.3 BATTERY CHARGING CONFIGURATION (<u>CFG_BC_EN</u>)

The <u>CFG BC EN</u> configuration strap is used to configure the battery charging port settings of the device to one of five settings. These modes are selected by the configuration of an external resistor on the <u>CFG BC EN</u> pin. The resistor options are a 200 k Ω pull-down, 200 k Ω pull-up, 10 k Ω pull-down, 10 k Ω pull-up, and 10 Ω pull-down, as shown in Table 3-4.

CFG NON REM Resistor Value	Setting
200 kΩ Pull-Down	No battery charging
200 kΩ Pull-Up	Port 1 battery charging
10 kΩ Pull-Down	Port 1, 2 battery charging
10 kΩ Pull-Up	Port 1, 2, 3 battery charging
10 Ω Pull-Down	Port 1, 2, 3, 4 battery charging

TABLE 3-4:CFG BC ENRESISTOR ENCODING

3.3.4 PROG_FUNC[8:1] CONFIGURATION (CONFIG STRAP [2:1])

The USB4715 provides 8 programmable function pins (PROG_FUNC[8:1]). These pins can be configured to 6 predefined configurations via the <u>CONFIG STRAP [2:1]</u> pins. These configurations are selected via external resistors on the <u>CONFIG STRAP [2:1]</u> pins, as detailed in Table 3-5. Resistor values and combinations not detailed in Table 3-5 are reserved and should not be used.

Mode	<u>CONFIG STRAP 2</u> Resistor Value	<u>CONFIG STRAP 1</u> Resistor Value
Configuration 1	200 kΩ Pull-Down	200 kΩ Pull-Down
Configuration 2	200 kΩ Pull-Down	200 kΩ Pull-Up
Configuration 3	200 kΩ Pull-Down	10 kΩ Pull-Down
Configuration 4	200 kΩ Pull-Down	10 kΩ Pull-Up
Configuration 5	200 kΩ Pull-Down	10 Ω Pull-Down
Configuration 6	200 kΩ Pull-Down	10 Ω Pull-Up

TABLE 3-5: CONFIG_STRAP_[2:1] RESISTOR ENCODING

A summary of the configuration pin assignments for each of the 6 configurations is provided in Table 3-6. For details on behavior of each programmable function, refer to Table 3-7.

TABLE 3-6: PROG_FUNC[8:1] FUNCTION ASSIGNMENT

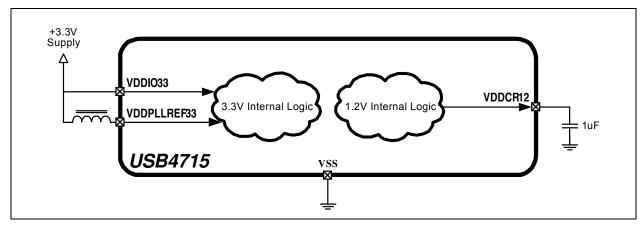
Pin	Configuration 1	Configuration 2	Configuration 3	Configuration 4	Configuration 5	Configuration 6
PROG_FUNC_1	SMB1_DAT	SMB1_DAT	SMB1_DAT	SMB1_DAT	SMB1_DAT	SMB1_DAT
PROG_FUNC_2	I2S_LRCK	UART_TX	CONNECT_IND1	UART_TX	UART_TX	I2S_LRCK
PROG_FUNC_3	I2S_SDOUT	UART_RX	CONNECT_IND2	UART_RX	UART_RX	I2S_SDOUT
PROG_FUNC_4	I2S_SDIN	GPIO6	CONNECT_IND3	GPIO6	GPIO6	I2S_SDIN
PROG_FUNC_5	I2S_MCLK	GPIO8	GPIO8	GPIO8	SMB2_DAT	I2S_MCLK
PROG_FUNC_6	I2S_SCK	GPIO10	GPIO10	GPIO10	SMB2_CLK	I2S_SCK
PROG_FUNC_7	MIC_DET	GPIO11	CONNECT_IND4	GPIO11	GPIO11	GPIO11
PROG_FUNC_8	SMB1_CLK	SMB1_CLK	SMB1_CLK	SMB1_CLK	SMB1_CLK	SMB1_CLK

TABLE 3-7: PROGRAMMABLE FUNCTIONS DESCRIPTIONS

Function	Buffer Type	Description	
UART Interface			
UART_TX	O12	UART Transmit	
UART_RX	I	UART Receive	
SMBus Master Interface			
SMB1_CLK	I/OD12	SMBus Master Clock	
SMB1_DAT	I/OD12	SMBus Master Data	
SMBus Slave Interface			
SMB2_CLK	I/OD12	SMBus Slave Clock	
		For proper SMBus slave operation, an external 10 $k\Omega$ resistor is required on this signal.	

TABLE 3-7: PROGRAMMABLE FUNCTIONS DESCRIPTIONS (CONTINUED)

Function	Buffer Type	Description
SMB2_DAT	I/OD12	SMBus Slave Data
		For proper SMBus slave operation, an external 10 $k\Omega$ resistor is required on this signal.
		I ² S Interface
I2S_SCK	O12	I ² S Continuous Serial Clock
I2S_LRCK	O12	I ² S Word Select / Left-Right Clock
I2S_MCLK	O12	I ² S Master Clock
I2S_SDOUT	O12	I ² S Serial Data Out
I2S_SDIN	I	I ² S Serial Data In
MIC_DET	I	I ² S MIC Plug Detect
		0 = No microphone plugged into the audio jack 1 = Microphone plugged into the audio jack


Miscellaneous			
GPIOx	I/O12	General Purpose Inputs/Outputs (<i>x</i> = 6, 8, 10-11)	
CONNECT_IND[4:1]	O12	Downstream Port 4-1 Connect Indicator 1 = USB 2.0 or USB 1.1 connection to port 0 = Nothing connected to port	

4.0 DEVICE CONNECTIONS

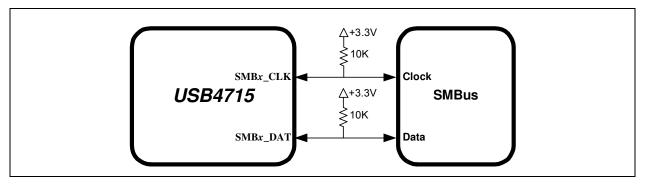
4.1 **Power Connections**

Figure 4-1 illustrates the device power connections.

FIGURE 4-1: POWER CONNECTIONS

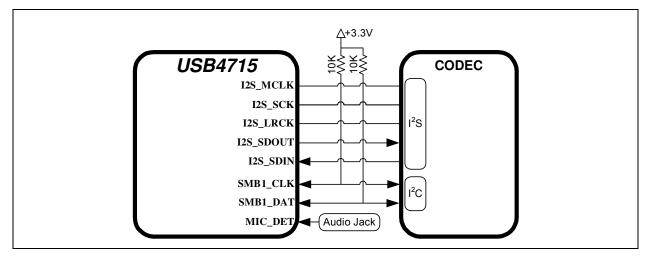
4.2 SPI Flash Connections

Figure 4-2 illustrates the device SPI Flash connections.


FIGURE 4-2: SPI FLASH CONNECTIONS

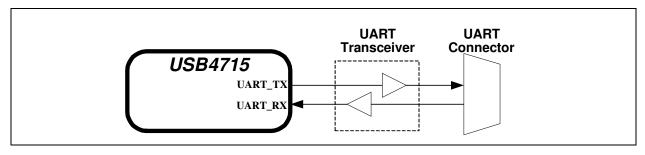
4.3 SMBus Connections

Figure 4-3 illustrates the device SMBus Connections.


FIGURE 4-3: SMBUS CONNECTIONS

4.4 I²S Connections

Figure 4-4 illustrates the device I²S connections.


FIGURE 4-4: I²S CONNECTIONS

4.5 UART Connections

Figure 4-5 illustrates the device UART connections.

FIGURE 4-5: UART CONNECTIONS

5.0 MODES OF OPERATION

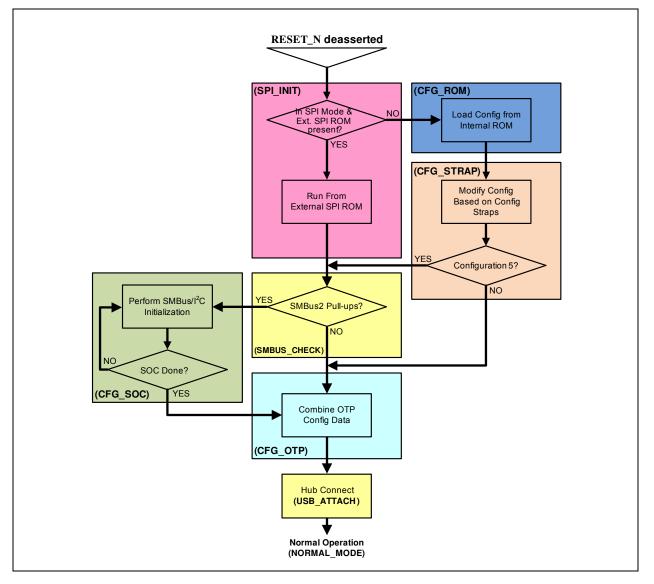

The device provides two main modes of operation: Standby Mode and Hub Mode. These modes are controlled via the **RESET_N** pin, as shown in Table 5-1.

TABLE 5-1: MODES OF OPERATION

RESET_N Input	Summary
0	Standby Mode : This is the lowest power mode of the device. No functions are active other than monitoring the RESET_N input. All port interfaces are high impedance and the PLL is halted. Refer to Section 8.9, "Resets" for additional information on RESET_N .
1	Hub (Normal) Mode : The device operates as a configurable USB hub. This mode has various sub-modes of operation, as detailed in Figure 5-1. Power consumption is based on the number of active ports, their speed, and amount of data received.

The flowchart in Figure 5-1 details the modes of operation and details how the device traverses through the Hub Mode stages (shown in bold). The remaining sub-sections provide more detail on each stage of operation.

FIGURE 5-1: HUB MODE FLOWCHART

5.1 Boot Sequence

5.1.1 STANDBY MODE

If the **RESET_N** pin is asserted, the hub will be in Standby Mode. This mode provides a very low power state for maximum power efficiency when no signaling is required. This is the lowest power state. In Standby Mode all downstream ports are disabled, the USB data pins are held in a high-impedance state, all transactions immediately terminate (no states saved), all internal registers return to their default state, the PLL is halted, and core logic is powered down in order to minimize power consumption. Because core logic is powered off, no configuration settings are retained in this mode and must be re-initialized after **RESET_N** is negated high.

5.1.2 SPI INITIALIZATION STAGE (SPI_INIT)

The first stage, the initialization stage, occurs on the deassertion of **RESET_N**. In this stage, the internal logic is reset, the PLL locks if a valid clock is supplied, and the configuration registers are initialized to their default state. The internal firmware then checks for an external SPI ROM. The firmware looks for an external SPI flash device that contains a valid signature of "2DFU" (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the SPI Firmware/external SPI ROM is enabled and the code execution begins at address 0x0000 in the external SPI device. If a valid signature is not found, then execution continues from internal ROM (CFG_ROM stage).

When using an external SPI ROM, a minimum of 2.2 Mbit is required, and 60 MHz or faster SPI ROM must be used. Both 1- and 2-bit SPI ROM are supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI flashes are supported.

If the system is not strapped for SPI Mode, code execution will continue from internal ROM (CFG_ROM stage).

5.1.3 CONFIGURATION FROM INTERNAL ROM STAGE (CFG_ROM)

In this stage, the internal firmware loads the default values from the internal ROM. Most of the hub configuration registers, USB descriptors, electrical settings, etc. will be initialized in this state even when running from SPI.

5.1.4 CONFIGURATION STRAP READ STAGE (CFG_STRAP)

In this stage, the firmware reads the following configuration straps to override the default values:

- CONFIG STRAP [2:1]
- PRT DIS P[4:1]
- PRT DIS M[4:1]
- CFG NON REM
- <u>CFG BC EN</u>

If the <u>CONFIG STRAP [2:1]</u> pins are set to Configuration 5, the device will move to the SMBUS_CHECK stage, otherwise it move to the CFG_OTP stage. Refer to Section 3.3, "Configuration Straps and Programmable Functions" for information on usage of the various device configuration straps.

5.1.5 SMBUS CHECK STAGE (SMBUS_CHECK)

Based on the **PROG_FUNC[8:1]** configuration selected (refer to Section 3.3.4, "PROG_FUNC[8:1] Configuration (CON-FIG_STRAP_[2:1])"), the firmware will check for the presence of external pull up resistors on the SMBus slave programmable function pins. If 10K pull-ups are detected on both pins, the device will be configured as an SMBus slave, and the next state will be CFG_SOC. If a pull-up is not detected in either of the pins, the next state is CFG_OTP.

5.1.6 SOC CONFIGURATION STAGE (CFG_SOC)

In this stage, the SOC can modify any of the default configuration settings specified in the integrated ROM, such as USB device descriptors, port electrical settings, and control features such as downstream battery charging.

In this stage the firmware will wait indefinitely for the SMBus/I²C configuration there is no time limit on this stage. The external SMBus master writes to register 0xFF, to end the configuration in legacy mode. In non-legacy mode, the SMBus command USB_ATTACH (opcode 0xAA55) or USB_ATTACH_WITH_SMBUS (opcode 0xAA56) will finish the configuration.

5.1.7 OTP CONFIGURATION STAGE (CFG_OTP)

Once the SOC has indicated that it is done with configuration, all configuration data is combined in this stage. The default data, the SOC configuration data, and the OTP data are all combined in the firmware and the device is programmed.

© 2017 Microchip Technology Inc.

Note: Changes to hub registers made in OTP memory space are not visible via SMBus during CFG_SOC stage. Any register which is modified via SMBus during SOC_CFG and also modified in the OTP memory will exit the configuration stages with the value as programmed in the OTP memory.

5.1.8 HUB CONNECT STAGE (USB_ATTACH)

Once the hub registers are updated through default values, SMBus master, and OTP, the device firmware will enable attaching the USB host by setting the USB_ATTACH bit in the HUB_CMD_STAT register. The device will remain in the Hub Connect stage indefinitely until the VBUS function is deasserted/assertion of external RESET_N pin.

5.1.9 NORMAL MODE (NORMAL_MODE)

Lastly, the hub enters Normal Mode of operation. In this stage full USB operation is supported under control of the USB Host on the upstream port. The device will remain in the normal mode until the operating mode is changed by the USB Host.

If **RESET_N** is asserted low, then Standby Mode is entered. The device may then be placed into any of the designated hub stages. Asserting a soft disconnect on the upstream port will cause the hub to return to the Hub Connect stage until the soft disconnect is negated.

6.0 DEVICE CONFIGURATION

The device supports a large number of features (some mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. The hub can be configured either internally or externally depending on the implemented interface.

Microchip provides a comprehensive software programming tool, MPLAB Connect (formerly ProTouch2), for OTP configuration of various USB4715 functions and registers. All configuration is to be performed via the MPLAB Connect Configurator programming tool. For additional information on this tool, refer to th MPLAB Connect Configurator programming tool product page at http://www.microchip.com/design-centers/usb/mplab-connect-configurator.

Additional information on configuring the USB4715 via SMBus is provided in the *AN2439* - *Configuration of the USB491x/USB492x/USB4715*" application note, which contains details on the hub operational mode, SOC configuration stage, OTP configuration, USB configuration, and configuration register definitions. This application note, along with other USB4715 resources, can be found on the Microchip USB4715 product page at www.microchip.com/USB4715.

Note: Device configuration straps and programmable pins are detailed in Section 3.3, "Configuration Straps and Programmable Functions," on page 12. Refer to Section 7.0, "Device Interfaces" for detailed information on each device interface.

7.0 DEVICE INTERFACES

The USB4715 provides multiple interfaces for configuration, external memory access, etc.. This section details the various device interfaces and their usage:

- SPI/SQI Master Interface
- SMBus/I2C Master/Slave Interfaces
- I2S Interface
- UART Interface

Note: For details on how to enable each interface, refer to Section 3.3, "Configuration Straps and Programmable Functions".

For information on device connections, refer to Section 4.0, "Device Connections". For information on device configuration, refer to Section 6.0, "Device Configuration".

Microchip provides a comprehensive software programming tool, MPLAB Connect (formerly ProTouch2), for configuring the USB4715 functions, registers and OTP memory. All configuration is to be performed via the MPLAB Connect Configurator programming tool. For additional information on this tool, refer to th MPLAB Connect Configurator programming tool product page at http://www.microchip.com/design-centers/usb/mplab-connect-configurator.

7.1 SPI/SQI Master Interface

The SPI/SQI controller has two basic modes of operation: execution of an external hub firmware image, or the USB to SPI bridge. On power up, the firmware looks for an external SPI flash device that contains a valid signature of 2DFU (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM mode is enabled and the code execution begins at address 0x0000 in the external SPI device. If a valid signature is not found, then execution continues from internal ROM and the SPI interface can be used as a USB to SPI bridge.

The second mode of operation is the USB to SPI bridge operation. Additional details on this feature can be found in Section 8.5, "USB to SPI Bridging" as well as the AN2430 - USB to SPI Bridging with USB4715 and USB49xx application note.

Table 7-1 details how the associated pins are mapped in SPI vs. SQI mode

SPI Mode	SQI Mode	Description
SPI_CE_N	SQI_CE_N	SPI/SQI Chip Enable (Active Low)
SPI_CLK	SQI_CLK	SPI/SQI Clock
SPI_DO	SQI_D0	SPI Data Out; SQI Data I/O 0
SPI_DI	SQI_D1	SPI Data In; SQI Data I/O 1
-	SQI_D2	SQI Data I/O 2
-	SQI_D3	SQI Data I/O 3

TABLE 7-1:SPI/SQI PIN USAGE

Note: For SPI timing information, refer to Section 9.6.8, "SPI/SQI Timing".

7.2 SMBus/I²C Master/Slave Interfaces

The USB4715 provides two independent SMBus/I²C controllers SMBus 1 and SMBus 2, which can be used to access internal device run time registers or program the internal OTP memory. SMBus 1 is used as the USB to SMBus/I²C bridge, and SMBus 2 is used as the slave interface. The device contains two 128 byte buffers to enable simultaneous master/slave operation and to minimize firmware overhead in processed SMBus/I²C packets.

The SMBus 1 and SMBus 2 interfaces are assigned to programmable pins (PROG_FUNC_x) and therefore the device must be programmed into specific configurations to enable both interfaces. SMBus 1 is available in all CON-FIG_STRAP[1:2] settings. SMBus 2 is available only with specific CONFIG_STRAP[1:2] settings. Refer to Section 3.3.4, "PROG_FUNC[8:1] Configuration (CONFIG_STRAP_[2:1])" for additional information.

Note: For SMBus/I²C timing information, refer to Section 9.6.5, "SMBus Timing" and Section 9.6.6, "I2C Timing".

7.3 I²S Interface

The USB4715 provides an integrated I^2S interface to facilitate the connection of digital audio devices. The I^2S interface conforms to the voltage, power, and timing characteristics/specifications as set forth in the I^2S -Bus Specification, and consists of the following signals:

- I2S_SDIN: Serial Data Input
- I2S_SDOUT: Serial Data Output
- I2S_SCK: Serial Clock
- I2S_LRCK: Left/Right Clock (SS/FSYNC)
- I2S_MCLK: Master Clock

Each audio connection is half-duplex, so **I2S_SDOUT** exists only on the transmit side and **I2S_SDIN** exists only on the receive side of the interface. Some codecs refer to the Serial Clock (**I2S_SCK**) as Baud/Bit Clock (BCLK). Also, the Left/ Right Clock is commonly referred to as LRC or LRCK. The I²S and other audio protocols refer to LRC as Word Select (WS).

The following codec is supported by default:

Analog Devices ADAU1961 (24-bit 96KHz)

Note: For I²S timing information, refer to Section 9.6.7, "I2S Timing".

7.3.1 MODES OF OPERATION

The USB audio class operates in three ways: Asynchronous, Synchronous and Adaptive. There are also multiple operating modes, such as hi-res, streaming, etc.. Typically for USB devices, inputs such as microphones are Asynchronous, and output devices such as speakers are Adaptive. The hardware is set up to handle all three modes of operation. It is recommended that the following configuration be used: Asynchronous IN; Adaptive OUT; 48Khz streaming mode; Two channels: 16 bits per channel.

7.3.1.1 Asynchronous IN 48KHz Streaming

In this mode, the codec sampling clock is set to 48Khz based on the local oscillator. This clock is never changed. The data from the codec is fed into the input FIFO. Since the sampling clock is asynchronous to the host clock, the amount of data captured in every USB frame will vary. This issue is left for the host to handle. The input FIFO has two markers, a low water mark (THRESHOLD_LOW_VAL), and a high water mark (THRESHOLD_HIGH_VAL). There are three registers to determine how much data to send back in each frame. If the amount of data in the FIFO exceeds the high water mark, then HI_PKT_SIZE worth of data is sent. If the data is between the high and low water mark, the normal MID_P-KT_SIZE amount of data is sent. If the data is below the low water mark, LO_PKT_SIZE worth of data is sent.

7.3.1.2 Adaptive OUT 48KHz Streaming

In this mode, the codec sampling clock is initially set to 48Khz based on the local oscillator. The host data is fed into the OUT FIFO. The host will send the same amount of data on every frame, i.e. 48KHz of data based on the host clock. The codec sampling clock is asynchronous to the host clock. This will cause the amount of data in the OUT FIFO to vary. If the amount of data in the FIFO exceeds the high water mark, then the sampling clock is increased. If the data is between the high and low water mark, the sampling clock does not change. If the data is below the low water mark, the sampling clock is decreased.

7.3.1.3 Synchronous Operation

For synchronous operation, the internal clock must be synchronized with the host SOF. The Frame SOF is nominally 1mS. Since there is significant jitter in the SOFs, there is circuitry provided to measure the SOFs over a long period of time to get a more accurate reading. The calculated host frequency is used to calculate the codec sampling clock.

7.4 UART Interface

The device incorporates a configurable universal asynchronous receiver/transmitter (UART) that is functionally compatible with the NS 16550AF, 16450, 16450 ACE registers and the 16C550A. The UART performs serial-to-parallel conversion on received characters and parallel-to-serial conversion on transmit characters. Two sets of baud rates are provided: 24 Mhz and 16 MHz. When the 24 Mhz source clock is selected, standard baud rates from 50 to 115.2 K are available. When the source clock is 16 MHz, baud rates from 125 K to 1,000 K are available. The character options are programmable for the transmission of data in word lengths of from five to eight, 1 start bit; 1, 1.5 or 2 stop bits; even, odd, sticky or no parity; and prioritized interrupts. The UART contains a programmable baud rate generator that is capable of dividing the input clock or crystal by a number from 1 to 65535. The UART is also capable of supporting the MIDI data rate.

7.4.1 TRANSMIT OPERATION

Transmission is initiated by writing the data to be sent to the TX Holding Register or TX FIFO (if enabled). The data is then transferred to the TX Shift Register together with a start bit and parity and stop bits as determined by settings in the Line Control Register. The bits to be transmitted are then shifted out of the TX Shift Register in the order Start bit, Data bits (LSB first), Parity bit, Stop bit, using the output from the Baud Rate Generator (divided by 16) as the clock.

If enabled, a TX Holding Register Empty interrupt will be generated when the TX Holding Register or the TX FIFO (if enabled) becomes empty.

When FIFOs are enabled (i.e. bit 0 of the FIFO Control Register is set), the UART can store up to 16 bytes of data for transmission at a time. Transmission will continue until the TX FIFO is empty. The FIFO's readiness to accept more data is indicated by interrupt.

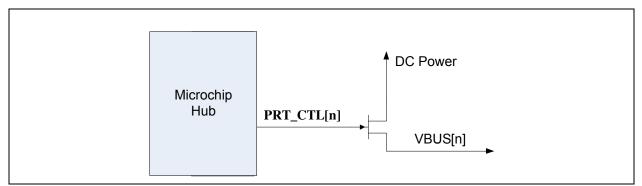
7.4.2 RECEIVE OPERATION

Data is sampled into the RX Shift Register using the Receive clock, divided by 16. The Receive clock is provided by the Baud Rate Generator. A filter is used to remove spurious inputs that last for less than two periods of the Receive clock. When the complete word has been clocked into the receiver, the data bits are transferred to the RX Buffer Register or to the RX FIFO (if enabled) to be read by the CPU. (The first bit of the data to be received is placed in bit 0 of this register.) The receiver also checks that the parity bit and stop bits are as specified by the Line Control Register.

If enabled, an RX Data Received interrupt will be generated when the data has been transferred to the RX Buffer Register or, if FIFOs are enabled, when the RX Trigger Level has been reached. Interrupts can also be generated to signal RX FIFO Character Timeout, incorrect parity, a missing stop bit (frame error) or other Line Status errors.

When FIFOs are enabled (i.e. bit 0 of the FIFO Control Register is set), the UART can store up to 16 bytes of received data at a time. Depending on the selected RX Trigger Level, interrupt will go active to indicate that data is available when the RX FIFO contains 1, 4, 8 or 14 bytes of data.

8.0 FUNCTIONAL DESCRIPTIONS


This section details various USB4715 functions, including:

- Downstream Battery Charging
- FlexConnect
- USB to GPIO Bridging
- USB to SMBus/I2C Bridging
- USB to SPI Bridging
- USB to UART Bridging
- Link Power Management (LPM)
- Port Power Control
- Resets

8.1 Downstream Battery Charging

The device can be configured by an OEM to have any of the downstream ports support battery charging. The hub's role in battery charging is to provide acknowledgment to a device's query as to whether the hub system supports USB battery charging. The hub silicon does not provide any current or power FETs or any additional circuitry to actually charge the device. Those components must be provided externally by the OEM.

FIGURE 8-1: BATTERY CHARGING EXTERNAL POWER SUPPLY

If the OEM provides an external supply capable of supplying current per the battery charging specification, the hub can be configured to indicate the presence of such a supply from the device. This indication, via a handshake on the D+ and D- at the start of the connection with the device, is on a per port basis. For example, the OEM can configure two ports to support battery charging through high current power FETs and leave the other two ports as standard USB ports.

For detailed information on utilizing the USB4715 battery charging feature, refer to the application note "USB Battery Charging with Microchip USB4715 and USB49xx Hubs", which can be found on the Microchip USB4715 product page at www.microchip.com/USB4715.

8.2 FlexConnect

The USB4715 allows any of the 4 FlexConnect capable USB ports to assume the role of USB host at any time during hub operation. This host role exchange feature is called FlexConnect.

This functionality can be used in two primary ways:

- 1. **Host Swapping:** This functionality can be achieved through a hub wherein a host and device can agree to swap the host/device relationship; The host becomes a device, and the device becomes a host.
- 2. **Host Sharing:** A USB ecosystem can be shared between multiple hosts. Note that only 1 host may access to the USB tree at a time.

FlexConnect can be enabled through any of the following three methods:

- **SMBus Control:** An embedded SMBus master can control the state of the FlexConnect feature through basic write/read operations.
- · USB Command: FlexConnect can be initiated via a special USB command directed to the hub's internal Hub