

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

500 W, Non-Magnetic Low Capacitance **Bidirectional TVS array**

DESCRIPTION

This Transient Voltage Suppressor (TVS) is assembled in a non-magnetic QFN-143 package with a leadframe 100% free of iron. It has the same pinout and footprint as the SOT-143 package and is aimed at applications in MRI machines and other magnetic environments where the use of ferrous metals is not acceptable. The configuration gives protection to 1 bidirectional data or interface line. It is designed for use in applications where low capacitance protection is required at the board level from voltage transients caused by electrostatic discharge (ESD) as defined in IEC 61000-4-2, electrical fast transients (EFT) per IEC 61000-4-4 and the secondary effects of lightning. These TVS arrays have a peak power rating of 500 watts for an 8/20 µs pulse (figure 1). With a capacitance of only 3 pF, this part can provide protection to very fast data lines including USB at 900 Mbits/sec.

QFN-143

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Protects 1 bidirectional line
- Surge protection per IEC 61000-4-2 and IEC 61000-4-4
- Ultra low capacitance
- Low profile surface mount package
- RoHS compliant versions are available

Also available:

Unidirectional (QFN-143)

USBQNM50403e3 USBQNM50424e3

APPLICATIONS / BENEFITS

EIA RS485 data rates: 5 Mbps

- 10 Base-T Ethernet
- USB data rate 900 Mbps
- Non-magnetic for MRI applications

MAXIMUM RATINGS @ 25 °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Storage Temperature	T _{STG}	-55 to +150	°C
Junction Temperature	TJ	-55 to +125	°C
Peak Pulse Power Dissipation with a 10/1000µs waveform (with a duty factor of 0.01%)	P _{PP}	500	W
Solder Temperature @ 10 s		260	°C

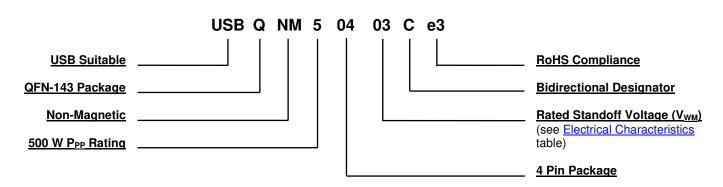
MSC - Lawrence

6 Lake Street. Lawrence, MA 01841 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Void-free transfer molded thermosetting epoxy body meeting UL94V-0.
- TERMINALS: RoHS compliant annealed matte-tin plating over EFTEC64T non-magnetic copper alloy. Readily solderable per MIL-STD-750, method 2026.
- MARKING: Body marked with part number code (NxxC).
- POLARITY: Dot in corner indicates pin 1.
- TAPE-AND-REEL: Standard per EIA-481-B (add "TR" suffix to part number). Consult factory for quantities.
- WEIGHT: Approximately 16.53 milligrams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS			
Symbol	Definition		
$\alpha_{V(\text{BR})}$	Temperature Coefficient of Breakdown Voltage: The change in breakdown voltage divided by the change in temperature that caused it expressed in %/°C or mV/°C.		
I _(BR)	Breakdown Current: The current used for measuring breakdown voltage V _(BR) .		
I_D	Standby Current: The current through the device at rated stand-off voltage.		
ІРР	Peak Impulse Current: The maximum rated random recurring peak impulse current or nonrepetitive peak impulse current that may be applied to a device. A random recurring or nonrepetitive transient current is usually due to an external cause, and it is assumed that its effect will have completely disappeared before the next transient arrives.		
$V_{(BR)}$	Breakdown Voltage: The voltage across the device at a specified current I _(BR) in the breakdown region.		
Vc	Clamping Voltage: The voltage across the device in a region of low differential resistance during the application of an impulse current (I _{PP}) for a specified waveform.		
V_{WM}	Working Standoff Voltage: The maximum-rated value of dc or repetitive peak positive cathode-to-anode voltage that may be continuously applied over the standard operating temperature.		

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise stated

PART NUMBER	DEVICE MARKING	STAND- OFF VOLTAGE V _{WM} Volts	BREAKDOWN VOLTAGE V(BR) @ 1 mA Volts	CLAMPING VOLTAGE V _C @ 1 Amp (Figure 2) Volts	CLAMPING VOLTAGE V _C @ 5 Amp (Figure 2) Volts MAX	STANDBY CURRENT I _D @ V _{WM} µA MAX	CAPACITANCE (f= 1 MHz) C @ 0 V pF	TEMPERATURE COEFFICIENT OF V _(BR) α _{V(BR)} mV/°C
USBQNM50403Ce3	N03CE	3.3	4.0	8.0	11	200	3	-5
USBQNM50405Ce3	N05CE	5.0	6.0	10.8	12	40	3	1
USBQNM50412Ce3	N12CE	12.0	13.3	19.0	26	1	3	8
USBQNM50415Ce3	N15CE	15.0	16.7	24.0	32	1	3	11
USBQNM50424Ce3	N24CE	24.0	26.7	43.0	57	1	3	28

GRAPHS

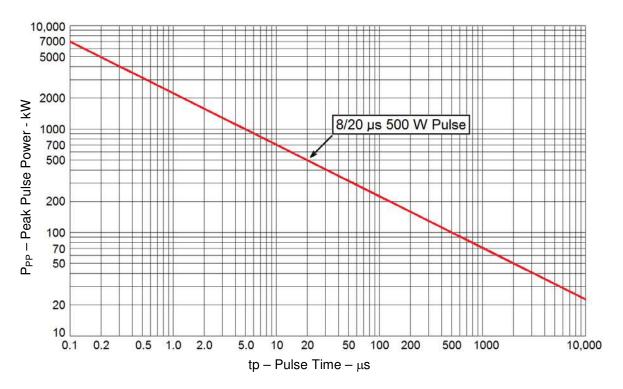


FIGURE 1
Peak Pulse Power vs. Pulse Time

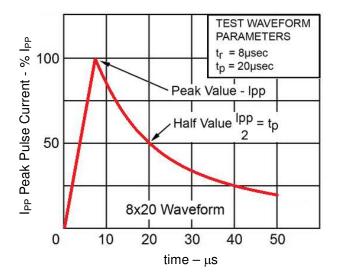
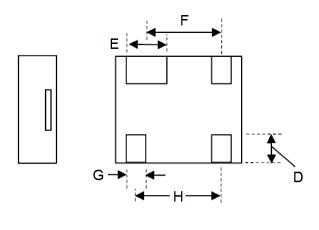
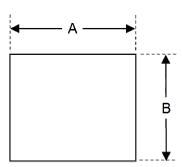
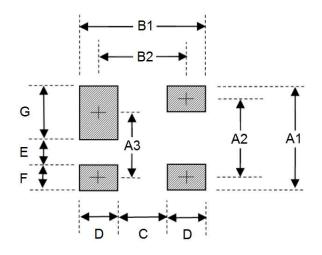




FIGURE 2
Pulse Waveform

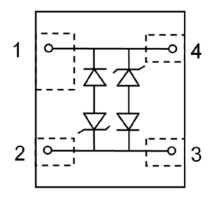
PACKAGE DIMENSIONS



		•
1		١.
		10
		Τ-
Ш		T .

	Dimensions				
Ref.	Inch		Millin	neters	
	Min	Max	Min	Max	
Α	0.112	0.116	2.85	2.95	
В	0.096	0.100	2.45	2.55	
С	0.0354	0.0366	0.900	0.930	
D	0.020	0.024	0.50	0.60	
E	0.031 NOM		0.80	MOM	
F	0.069 NOM		1.75	MOM	
G	0.018 NOM		0.45	NOM	
Н	0.076 NOM		1.92	NOM	

PAD LAYOUT



	Dimensions			
Ref.	Inch	Millimeters		
Ī	Nominal	Nominal		
A1	0.112	2.85		
A2	0.079	2.00		
A3	0.071	1.80		
B1	0.108	2.75		
B2	0.075	1.90		
С	0.041	1.05		
D	0.033	0.85		
Е	0.032	0.80		
F	0.033	0.85		
G	0.047	1.20		

See schematic on next page

SCHEMATIC

Seen from above