

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Future Technology Devices International Ltd.

V2-EVAL

Vinculum II Evaluation Board Datasheet

Document Reference No.: FT_000247

Version 2.0

Issue Date: 2010-07-29

Future Technology Devices International Ltd (FTDI)

Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow, G41 1HH, United Kingdom

Tel.: +44 (0) 141 429 2777 Fax: + 44 (0) 141 429 2758

E-Mail (Support): support1@ftdichip.com

Web: http://www.vinculum.com

Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow, G41 1HH, United Kingdom. Scotland Registered Number: SC136640

Table of Contents

1	Int	troduction	3
	1.1	Handling the board	3
	1.2	Environmental requirements	3
	1.3	Part Numbers	4
	1.4	References	4
	1.5	Acronyms and Abbreviations	5
2	Во	ard Description	
	2.1	V2-EVAL Board Features	
	2.2	Specifications	
		-Eval Board Components and Interfaces	
	V 2 3.1		
	3.1.	_	
	3.1.		
4		itial Board Set-up & Test	
_			
	4.1	Installing VNC2 Daughterboard	
	4.2	Testing the board	
5	De	tailed Description of Board Components	
	5.1	Power Select Jumper JP6	
	5.2	GPIO BUS Connectors	
	5.2.	L	
	5.2.		
	5.2.		
	5.2.		
	5.2.		
	5.2.	-	
	5.3	SPI Connector C9	
	5.4	UART Interface Connector C10	
	5.5	FIFO Interface Connector CN11	
	5.6	Prototyping area	
	5.7	USB1 interface CN1	26
	5.8	USB2 interface CN2	27
	5.8 5.9	USB2 interface CN2 VNC1L Interface Mode Select / GPIO Jumpers JP1, JP2	

1

Clearance	No.:	FTDI#1	48
o.ca.acc		– – –	

	5.11	LED enable/disable jumpers JP10 – JP14	30
	5.12	User push button switches	30
	5.13	Host USB power jumpers JP4, JP5	31
	5.14	Remote Wakeup jumper JP3	32
	5.15	Reset Push-button Switch	33
	5.16	`PROG' LED	33
		VNC2 Daughterboard Connector – J1	
	5.18	VNC2 Daughterboard Connector – J2	35
	5.19	VNC2 Daughterboard Connector – J3	36
	5.20	VNC2 Daughterboard Connector – J4	37
6	FT.	4232H Configuration	38
	6.1	UART Interface	39
	6.2	Debug Interface - UART Mode	40
	6.3	UART 'Spy' Interface	40
	6.4	Device Control – Bit Bang Mode	40
7	Co	nnecting to a PC Host	41
	7.1	Driver Installation	41
8	V2	-EVAL Software	45
	8.1	V2-EVAL Terminal Installation	45
	8.2	Using V2-EVAL Terminal	46
9	Во	ard Schematics	49
	9.1	V2-EVAL Board Schematics	50
	9.2	VNC2 Daughterboard - 32-pin QFN Schematic	55
		VNC2 Daughterboard - 48-pin QFN Schematic	
		VNC2 Daughterboard - 64-pin QFN Schematic	
1		-EVAL Board Assembly Drawing	
		ct Information	
		ndix A – List of Figures and Tables	
		of Figures	
		of Tables	
Λ		ndix B – Revision History	
	Phei	IMIA D REVISION HISTORY HILLINGHILLINGHILLINGHILLINGHILLING	J

1 Introduction

The following document details the features and specifications of the V2-EVAL board. The V2-EVAL is a hardware platform designed to support easy evaluation of FTDI's Vinculum-II (VNC2) series of embedded USB host controller devices.

The V2-Eval kit includes the following hardware items as standard

- 1 x V2-Eval base board.
- 1 x 5V/1A mains adapter PSU UK, US, European and Japanese versions available.
- 1 x USB A/B cable to connect to a host PC in programming / terminal emulation or debugging modes.
- 1 x USB gender changer for USB slave mode applications.

NOTE:

The V2-EVAL kit requires a VNC2 based daughterboard module to be installed into the V2-EVAL base board socket site, in order to enable development with the kit.

Daughterboard modules are sold separately, with 3 versions available for 32-pin, 48-pin and 64-pin package devices. Daughterboard modules can be purchased from FTDI or via our website http://www.ftdichip.com.

Before you proceed:

Please check that all the contents of the package are not damaged.

Ensure that your kit includes a proper version of the power supply, depending on the region where you live. Eval application software and project examples can be downloaded from: http://www.ftdichip.com

1.1 Handling the board

Static discharge precaution – Without proper anti-static handling the board can be damaged. Therefore, take anti-static precautions while handling the board.

1.2 Environmental requirements

The V2-Eval Board must be stored between -40°C and 80° C. The recommended operating temperature is between 0° C and 55° C

Figure 1.1 - V2-EVAL Motherboard(left) with Daughterboard Module(right)

1.3 **Part Numbers**

Part Number	Description
V2-EVAL	V2-EVAL kit with base board, power supply and cables.
V2-EVAL-EXT32	VNC2 daughterboard module with 32-pin QFN VNC2 device for use with V2-EVAL.
V2-EVAL-EXT48	VNC2 daughterboard module with 48-pin QFN VNC2 device for use with V2-EVAL.
V2-EVAL-EXT64	VNC2 daughterboard module with 64-pin QFN VNC2 device for use with V2-EVAL.

Table 1.0 **Part Numbers**

1.4 References

The document contains references to the following websites and documents. Links to most documents are available from the FTDI website, $\frac{\text{http://www.ftdichip.com}}{\text{http://www.ftdichip.com}}$.

Document Name	Description			
1. FT_000138	Vinculum-II Embedded Dual USB Host Controller IC Data Sheet.			
2. FT_000060	FT4232H Data Sheet.			
3. AN_137	3. AN_137 Vinculum-II IO Cell Description.			
4. AN_138	138 Vinculum-II Debug Interface Description.			
5. AN_139	Vinculum-II IO Mux Explained.			
6. AN_140	Vinculum-II PWM Example.			
7. FT_000006 Vinculum Firmware User Manual.				
8. USB 2.0	Universal Serial Bus Specification Revision 2.0 USB Implementers Forum http://www.usb.org .			

Table 1.1 **Document References**

1.5 Acronyms and Abbreviations

Terms	Description			
FIFO	First In First Out.			
GPIO	General Purpose Input Output.			
I/O	Input / Output.			
MISO	Master In Slave Out.			
MOSI	Master Out Slave In.			
SPI	Serial Peripheral Interface.			
UART	Universal Asynchronous Receiver/Transmitter.			
USB	Universal Serial Bus.			
VNC2	Vinculum-II.			

Table 1.2 Acronyms and Abbreviations

2 Board Description

V2-Eval Board is intended for use as a hardware platform to enable easy evaluation of FTDI's Vinculum-II VNC2 series of embedded USB Host / Slave controllers. The V2-Eval Board includes all the necessary components required by a user to begin developing USB Host / Slave system applications based on the VNC2 device.

2.1 V2-EVAL Board Features

- VNC2 Embedded USB Host / Slave chip accessible via daughterboard.
- Selection of VNC2 daughterboards to support 32-pin, 48-pin and 64-pin QFN packages.
- Two USB type A connectors for connecting to USB slave peripherals.
- VNC2 IO port connectors grouped by port name/or function.
- FT42232H –USB to guad channel UART device for VNC2 programming & debug functions.
- One USB type B connector for connection to PC host via FT4232H.
- 4 User-programmable LEDs.
- 4 User-programmable push button switches.

2.2 Specifications

- Board supply voltage: 4.75V ... 5.25V.
- Board supply current: 60mA (with no USB devices on USB1 or USB2 port).
- IO connectors power output: 5V/150mA, 3.3V/150mA.
- Base board dimensions: 167mm x 156mm x 1.5mm (L x W x H).
- VNC2 daughterboard dimensions: 37.9mm x 32.48mm x 10.0mm (L x W x H).

3 V2-Eval Board Components and Interfaces

This chapter describes the operational and connectivity information for the V2-Eval board major components and interfaces.

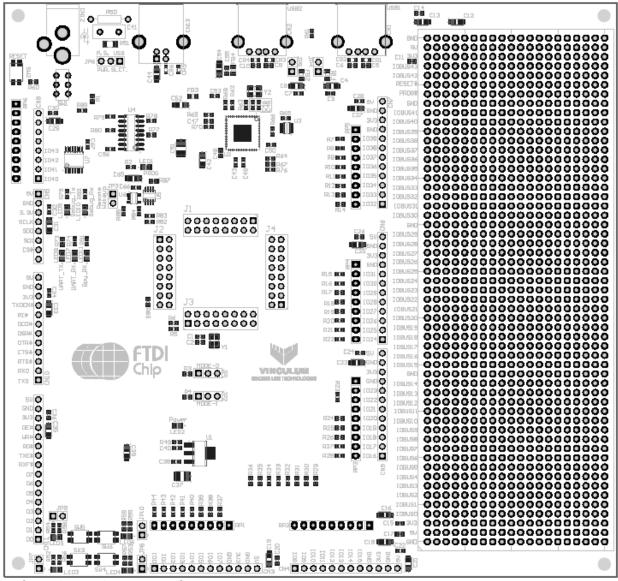


Figure 3.1 V2-EVAL Board Layout

3.1 Block Diagram

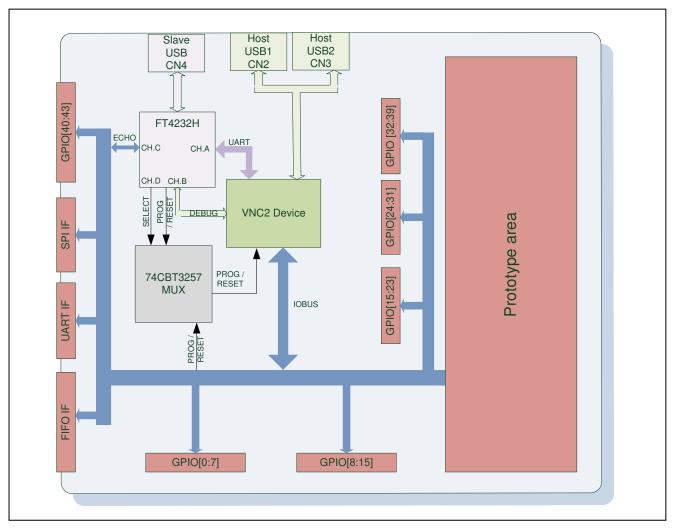


Figure 3.2 V2-EVAL Board Block Diagram

3.1.1 Components.

Component	Board designator	Description				
USB-UART bridge	U2	FT4232H USB ⇔ Quad UART/FIFO device.				
Configuration memory	U3	9356 Serial SPI EEPROM for FT4232H configuration data.				
IO multiplexer	U4	74CBT3257 4-bit, 1to2, FET Multiplexer/Demultiplexer.				
3.3V regulator	U1	AIC1735-33 Ultra low dropout 3.3V voltage regulator.				
Dual port buffer	U5	SN74LVC2G125 dual port buffer used to convert bidirectional debug signal into separate TX and RX signals.				
Inverter	U6	SN74LVC1G14 inverter device used to invert the TXDEN output from FT4232H to control output enable signal for dual port buffer.				
12MHz crystal	Y2	12MHz crystal for FT4232H.				
Single 5V DC power supply	CN12	Board adapter for included 5V DC power supply.				
Power switch	SW1	Power On/Off switch.				
Power source select JP6		Power source selection jumper.				
Reset button SW2		Push-button switch for manual reset of VNC2 device.				
Keyboard SW3-SW6		Four user push-button switches.				
User LEDs LED3-LED6		Four green user LEDs.				
PROG LED LED1		Red LED.				
Power LED LED2		Green LED.				
UART RX LED	LED7	Green LED.				
UART TX LED	LED8	Red LED.				
Debug TX	LED9	Red LED.				
Debug RX	LED10	Green LED.				
SPI_RX LED11		Green LED.				
LEDs enable jumpers JP7-JP10		Enable/disable user-defined LEDs.				
GPIO I/O Jumpers	JP1, JP2	GPIO I/O jumpers .				
REMOTE WAKEUP	JP3	VNC2 remote wakeup jumper.				
VBUS jumpers	JP4, JP5	USB1, USB2 power bus enable jumpers.				

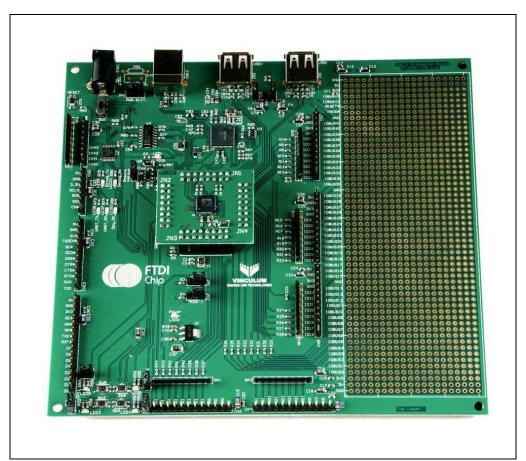
Table 3.1 V2-Eval Board Components

3.1.2 Interfaces.

Component	Board designator	Description				
USB1, USB2 (1)	CN1, CN2	VNC2 USB host ports 1&2.				
USB Type B	CN13	FT4232H USB Slave connection.				
VNC2 Socket	J1 -J4	Daughterboard connectors for VNC2 Daughterboard.				
SPI (2)	CN9	VNC2 SPI interface pins.				
UART (2)	CN10	VNC2 UART interface pins.				
FIFO ⁽²⁾ CN11		VNC2 FIFO interface pins.				
IOBUS[70] ⁽²⁾ CN3		VNC2 IOBUS [7:0] port pins.				
IOBUS[815] ⁽²⁾ CN4		VNC2 IOBUS [8:15] port pins.				
IOBUS[1623] ⁽²⁾ CN5		VNC2 IOBUS [16:23] port pins.				
IOBUS[2431] (2)	CN6	VNC2 IOBUS [24:31] port pins.				
IOBUS[3239] ⁽²⁾ CN7		VNC2 IOBUS [32:39] port pins.				
IOBUS[4043] ⁽²⁾ CN8		VNC2 IOBUS [40:43] port pins.				
Prototyping area ⁽²⁾	P1	All of VNC2 IO ports and PROG#, RESET# pins are brought on to this area.				

- (1) Gender changer required when ports are configured as slave ports by VNC2 firmware, to enable connection to a USB host port.
- (2) Those pins are shared between different areas and connectors on the board. You can use only one device at time connected to those pins.

Table 3.2 **V2-Eval Board Interfaces**


Initial Board Set-up & Test

4.1 **Installing VNC2 Daughterboard**

Prior to first powering the board, users must ensure that the daughterboard module hosting the VNC2 chip is correctly installed on to the main V2-Eval board. The V2-Eval board has 4 socket connectors, J1-J4, onto which the VNC2 daughterboard module is installed.

On the VNC2 daughterboard module, connector JN1 connects to corresponding socket J1, JN2 connects to socket J2, JN3 connects to socket J3 and JN4 connects to J4 on the V2-Eval board.

Please check that the VNC2 daughterboard module is correctly installed onto the V2-Eval board prior to power-up. Incorrect installation can cause the VNC2 to not function.

V2-EVAL Board with VNC2 Daughterboard Installed

4.2 Testing the board.

Ensure that the Power Select jumper JP6 is in 'P.S.' position (pins 2 & 3 shorted), to enable the board to be powered from the external power adapter.

Connect the 5V DC/1A power supply included in V2-Eval Kit to the external input power adapter connector (CN12), connect USB A/B cable to USB B connector (CN13) on V2-Eval Board and to a free USB port on host PC. Switch SW1 to the ON position (towards board edge). LED2 – POWER should now be on.

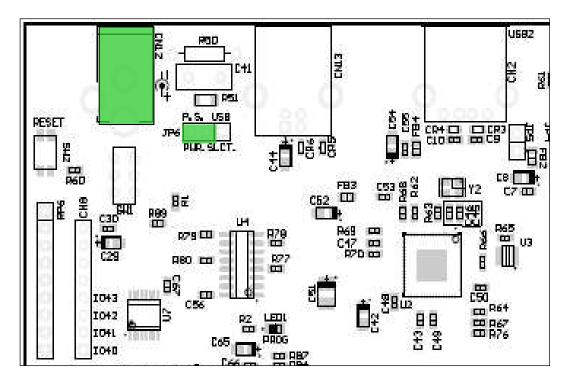


Figure 4.2 Power connector with Jumper JP6

The PCB circuitry will draw power either directly from the board 5V supply or from a 3.3V regulator that is powered by this 5V supply. This includes the VNC2 daughterboard module that is installed on the board. Upon power up, the power LED (LED2) will illuminate.

5 Detailed Description of Board Components.

5.1 Power Select Jumper JP6.

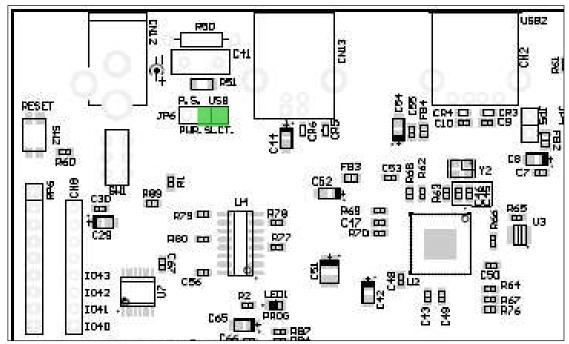


Figure 5.1 Power Select Jumper Configuration for USB Power

V2-Eval Board can draw its power either from the external 5V/1A DC Power Supply or from the USB interface when connected to a USB host via the B type connector (CN13). To enable USB power supply feature, switch the jumper JP6 to USB position, pins 1&2 shorted (pin 1 has a rectangle shaped pad on the bottom side of the board).

Warning!

Please remember that every device connected to the PC through USB port can draw NO MORE than 500mA from the USB host PC 5V power bus.

5.2 GPIO BUS Connectors

The V2-EVAL board features a set of 6 connectors providing access to GPIO capable pins on the VNC2 device. The GPIO pins are distributed across 6 connectors. The configuration of each connector is outlined in subsequent sections. Further each connector has a 5V and 3.3V power and GND pins.

5.2.1 **GPIO** [0:7] Connector CN3

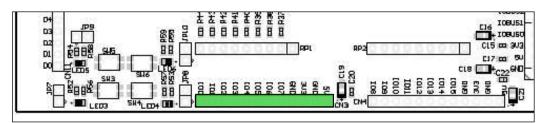


Figure 5.2 GPIO[0:7] Connector CN3

Signal	Connector	vCN2 Pin No			- 10	Description
name	name pin	64-PIN	type			
GPIO0 (3)	1	11	11	11	IO	GPIO data bit 0
GPIO1 (3)	2	12	12	12	IO	GPIO data bit 1
GPIO2 (3)	3	14	13	13	IO	GPIO data bit 2
GPIO3 (3)	4	15	14	14	IO	GPIO port, data bit 3
GPIO4 (3)	5	-	-	15	IO	GPIO port, data bit 4
GPIO5 (3)	6	-	-	16	IO	GPIO port, data bit 5
GPIO6 (3)	7	-	-	17	IO	GPIO port, data bit 6
GPIO7 (3)	8	-	-	18	IO	GPIO port, data bit 7
GND	9	-	-	-	-	Ground pin
3.3V ⁽⁴⁾	10	-	-	-	-	3.3V power rail.
GND	11	-	-	-	-	Ground pin
5V ⁽⁵⁾	12	-	-	-	-	5V power rail.

- (3) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels.

 The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- (4) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.
- (5) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.

Table 5.1 GPIO[0:7] port connector CN3

5.2.2 GPIO [8:15] Connector CN4

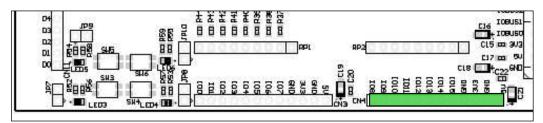


Figure 5.3 GPIO[8:15] Connector CN4

	Connector		VCN2 Pin N	0	10	
Signal name	pin	32-PIN	48-PIN	64-PIN	type	Description
GPIO8 (6)	1	-	-	19	IO	GPIO port, data bit 8
GPIO9 (6)	2	-	-	20	IO	GPIO port, data bit 9
GPIO10 (6)	3	-	-	22	IO	GPIO port, data bit 10
GPIO11 (6)	4	-	-	23	IO	GPIO port, data bit11
GPIO12 (6)	5	-	-	24	IO	GPIO port, data bit 12
GPIO13 (6)	6	-	-	25	IO	GPIO port, data bit 13
GPIO14 (6)	7	-	-	26	IO	GPIO port, data bit 14
GPIO15 (6)	8	-	-	27	IO	GPIO port, data bit 15
GND	9	-	-	-	-	Ground pin
3.3V ⁽⁷⁾	10	-	-	-	-	3.3V power rail.
GND	11	-	-	-	-	Ground pin
5V ⁽⁸⁾	12	-	-	=	=.	5V power rail.

- All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels. (6) The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered
- This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.

Table 5.2 GPIO[8:15] connector CN4

5.2.3 GPIO [16:23] Connector CN5

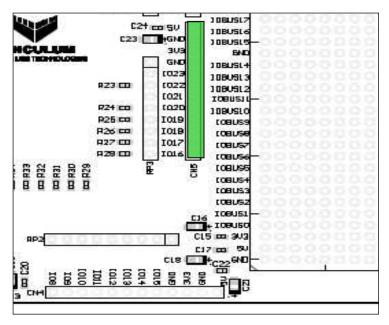


Figure 5.4 GPIO[16:23] Connector CN5

a: .	Connector	VCN2 Pin No			IO	
Signal name	pin	32-PIN	48-PIN	64-PIN	type	Description
GPIO16 (9)	1	-	-	27	IO	GPIO port, data bit 16
GPIO17 ⁽⁹⁾	2	-	46	28	IO	GPIO port, data bit 17
GPIO18 (9)	3	-	45	29	IO	GPIO port, data bit 18
GPIO19 (9)	4	-	48	31	IO	GPIO port, data bit19
GPIO20 ⁽⁹⁾	5	23	31	32	IO	GPIO port, data bit 20
GPIO21 ⁽⁹⁾	6	24 ⁽¹⁰⁾	32(10)	39	IO	GPIO port, data bit 21
GPIO22 ⁽⁹⁾	7	25	33	40	IO	GPIO port, data bit 22
GPIO23 ⁽⁹⁾	8	26(10)	34 (10)	41	IO	GPIO port, data bit 23
GND	9	-	-	-	-	Ground pin
3.3V ⁽¹¹⁾	10	-	-	-	-	3.3V power rail.
GND	11	-	-	-	-	Ground pin
5V ⁽¹²⁾	12	-	-	-	-	5V power rail.

- (9) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels. The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- (10) The following pins are only accessible on VNC2 when the onboard multiplexer select input is high. See section 6.4 for details.
- (11) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.
- (12) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.

Table 5.3 GPIO port connector CN5

5.2.4 GPIO [24:31] Connector CN6

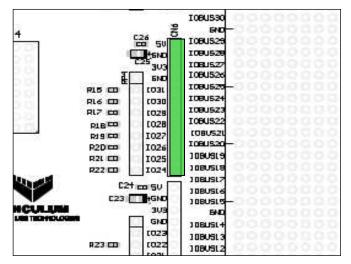


Figure 5.5 GPIO[24:31] Connector CN6

	Connecto		VCN2 Pin I	No	10	
Signal name	r pin	32-PIN	48-PIN	64-PIN	type	Description
GPIO24 (13)	1	-	35	43	IO	GPIO port, data bit 24
GPIO25 (13)	2	-	36	44	IO	GPIO port, data bit 25
GPIO26 (13)	3	-	37	45	IO	GPIO port, data bit 26
GPIO27 (13)	4	-	38	46	IO	GPIO port, data bit 27
GPIO28 (13)	5	-	41	47	IO	GPIO port, data bit 28
GPIO29 (13)	6	-	42	48	IO	GPIO port, data bit 29
GPIO30 (13)	7	-	43	49	IO	GPIO port, data bit 30
GPIO31 (13)	8	-	44	50	IO	GPIO port, data bit 31
GND	9	-	-	-	-	Ground pin
3.3V ⁽¹⁴⁾	10		-	-	-	3.3V power rail.
GND	11		-	-	-	Ground pin
5V ⁽¹⁵⁾	12		=	-	-	5V power rail.

- (13) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels.

 The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- (14) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.
- (15) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from power supply and no more than 50mA when the board is powered from USB bus.

Table 5.4 GPIO port connector CN6

5.2.5 GPIO [32:39] Connector CN7

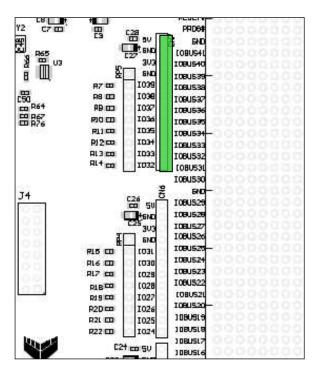


Figure 5.6 GPIO[32:39] Connector CN7

Signal name	Connector pin		VCN2 Pin No)		Description
		32-PIN	48-PIN	64-PIN	IO type	
GPIO32 (16)	1	29	15	51	IO	GPIO port, data bit 32
GPIO33 (16)	2	30	16	52	IO	GPIO port, data bit 33
GPIO34 (16)	3	31	18	55	IO	GPIO port, data bit 34
GPIO35 (16)	4	32	19	56	IO	GPIO port, data bit 35
GPIO36 (16)	5	-	-	57	IO	GPIO port, data bit 36
GPIO37 (16)	6	-	-	58	IO	GPIO port, data bit 37
GPIO38 (16)	7	-	-	59	IO	GPIO port, data bit 38
GPIO39 (16)	8	-	-	60	IO	GPIO port, data bit 39
GND	9	-	-	-	-	Ground pin
3.3V ⁽¹⁷⁾	10	-	-	-	-	3.3V power rail.
GND	11	-	-	-	-	Ground pin
5V ⁽¹⁸⁾	12	-	ı	-	-	5V power rail.

- (16) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels.

 The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- (17) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus
- (18) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from power supply and no more than 50mA when the board is powered from USB power bus.

Table 5.5 GPIO port connector CN7

5.2.6 GPIO [40:43] Connector CN8

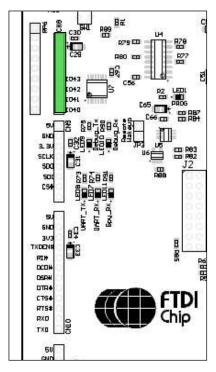


Figure 5.7 GPIO[32:39] Connector CN8

Signal name	Connector pin	VCN2 Pin No				
		32-PIN	48-PIN	64-PIN	type	Description
GPIO40 (19)	1	-	20	61	IO	GPIO port, data bit 40
GPIO41 (19)	2	-	21	62	IO	GPIO port, data bit 41
GPIO42 (19)	3	-	22	63	IO	GPIO port, data bit 42
GPIO43 (19)	4	-	23	64	IO	GPIO port, data bit 43
GND	5	-	-	-	-	Ground pin
3.3V ⁽²⁰⁾	6	-	-	-	-	3.3V power rail.
GND	7	-	-	-	-	Ground pin
5V ⁽²¹⁾	8	-	-	-	-	5V power rail.

- (19) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels.

 The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- (20) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB hus
- (21) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.

Table 5.6 GPIO port connector CN8

5.3 SPI Connector C9

Table 5.7 details connector pinout for the SPI connector C9. A full description of each signal is available in the <u>VNC2</u> data sheet.

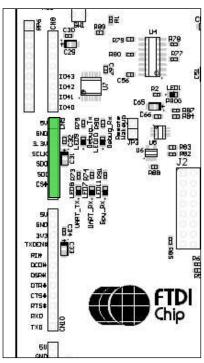


Figure 5.8 SPI Connector CN9

Signal name	Connector pin	VCN2 Pin No		TO turns	D	
		48-PIN	64-PIN	IO type	Description	
5V ⁽²²⁾	1	=	-	-	5V power rail.	
GND	2	-	-	-	Ground pin	
3.3V ⁽²³⁾	3	-	-	-	3.3V power rail.	
SCLK (24)	4	20	61	Input	SPI CLK Input	
SDO ⁽²⁴⁾	5	21	62	Output	SPI Master out slave in	
SDI ⁽²⁴⁾	6	22	63	Input	SDI Master in slave out	
CS# ⁽²⁴⁾	7	23	64	Output	Active low slave chip select 0 from master to slave 0	
GND	8	-	-	-	Ground pin	

- (22) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.
- (23) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.
- (24) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels..

 The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.

Table 5.7 SPI Port Connector CN9

5.4 UART Interface Connector C10

Table 5.8 details connector pinout for the UART connector C10. A full description of each signal is available in the <u>VNC2</u> data sheet.

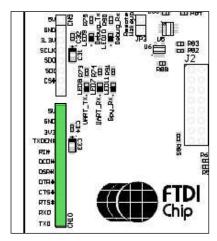


Figure 5.9 UART Connector CN10

Signal	Connector	VCN2 Pin No				
name	pin	32-PIN	48-PIN	64-PIN	IO type	Description
TXD (25)	1	23	31	39	Output	Transmit data
RXD (25)	2	24 ⁽²⁶⁾	32 ⁽²⁶⁾	40	Input	Receive data
RTS# (25)	3	25	33	41	Output	Request to Send Control Output / Handshake signal.
CTS# (25)	4	26 ⁽²⁶⁾	34 ⁽²⁶⁾	42	Input	Clear to Send Input / Handshake signal.
DTR# (25)	5		35	43	Output	Data Terminal Ready Output / Handshake signal.
DSR# (25)	6		36	44	Input	Data Set Ready Input / Handshake signal.
DCD# (25)	7		37	45	Input	Data Carrier Detect Control Input
RI# ⁽²⁵⁾	8		38	46	Input	Ring Indicator Control Input
TXDEN# ⁽²⁵⁾	9		-	47	Output	Transmit Data Enable
3.3V ⁽²⁷⁾	10		-	-	-	3.3V power rail.
GND	11		-	-	-	Ground pin
5V ⁽²⁸⁾	12		-	-	-	5V power rail.

- (25) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels..

 The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- (26) The following pins are only accessible on VNC2 when the onboard multiplexer select input is high. See section 6.4 for details.
- (27) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from power supply and no more than 50mA when the board is powered from USB power bus.
- (28) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from power supply and no more than 50mA when the board is powered from USB power bus.

Table 5.8 UART Interface Connector CN10

5.5 FIFO Interface Connector CN11

Table 5.9 details connector pinout for the FIFO connector C11. A full description of each signal is available in the <u>VNC2</u> data sheet.

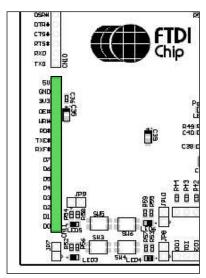


Figure 5.10 FIFO Connector CN11

Signal	Connector pin	V	CN2 Pin N	lo		Description
name		32-PIN	48-PIN	64-PIN	IO type	
D0 (29)	1	-	-	15	IO	FIFO data bit 0, bidirectional
D1 ⁽²⁹⁾	2	-	-	16	IO	FIFO data bit 1, bidirectional
D2 ⁽²⁹⁾	3	-	-	17	IO	FIFO data bit 2, bidirectional
D3 ⁽²⁹⁾	4	-	-	18	IO	FIFO data bit 3, bidirectional
D4 ⁽²⁹⁾	5	-	-	19	IO	FIFO data bit 4, bidirectional
D5 ⁽²⁹⁾	6	-	-	20	IO	FIFO data bit 5, bidirectional
D6 ⁽²⁹⁾	7	-	-	22	IO	FIFO data bit 6, bidirectional
D7 ⁽²⁹⁾	8	-	-	23	IO	FIFO data bit 7, bidirectional
RXF#	9	-	-	24	Output	FIFO receive full output
TXE#	10	-	-	25	Output	FIFO transmitter buffer empty output
RD#	11	-	-	26	Input	FIFO read enable input
WR#	12	-	-	27	Input	FIFO write enable input
OE#	13	-	-	28	Input	FIFO output enable – synchronous FIFO only
3.3V ⁽³⁰⁾	14	-	-	-	-	3.3V power rail.
GND	15		-		-	Ground pin
5V ⁽³¹⁾	16	-	-	-	-	5V power rail.

- (29) All VNC2's IO pins can be driven from 3.3V LVTTL TTL logic levels.
 - The use of these pins for GPIO is set by the IOMUX on the VNC2 device. The pins are shared by other connectors on the board. Care should be taken to ensure that pins are not driven from other headers on the board.
- (30) This pin is connected to 3.3V regulator output. External device can draw no more than 100mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.
- (31) This pin is connected to the board's 5V power rail. External device can draw no more than 250mA when board is powered from an external power supply and no more than 50mA when the board is powered from USB bus.

Table 5.9 FIFO Interface Connector CN11

5.6 Prototyping area

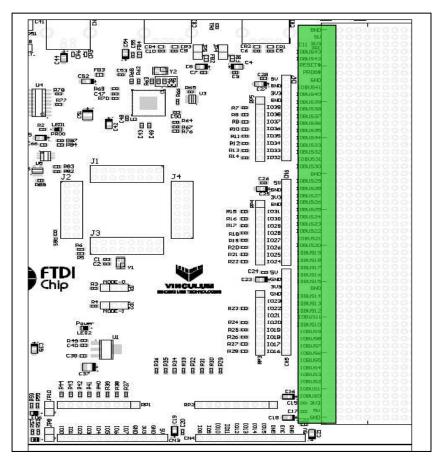


Figure 5.11 Prototyping area P1

A prototype area consisting of an array of 1100, 0.1-inch pitch holes is provided. The area can be used to create custom circuitry and connect components to the V2-EVAL board. The prototyping area includes connections to the 5V, 3.3 V planes and ground planes. The silk-screen text on the board indicates which holes are connected to which signals. Only the first column is connected to VNC2 IO ports, power and ground planes. All the other holes are not connected to anything on the board.

Signal pins are shared between other IO connectors on the board. For more information refer to the V2-Eval Board schematics.

Connector	Silk Screen Signal Label	VCN2 Pin No			10	
pin number		32-PIN	48-PIN	64-PIN	type	Description
1	GND	-	-	-	-	Ground pin
2	5V ⁽³²⁾	-	-	-	-	5V power rail. Can be used to power external devices
3	3.3V ⁽³³⁾	-	-	-	-	3.3V power rail. Can be used to power external devices
4	IOBUS0 ⁽³⁴⁾	11	11	11	IO	IOBUS port Data Bit 0. Debug port – default configuration.
5	IOBUS1 ⁽³⁴⁾	12	12	12	IO	IOBUS port Data Bit 1.
6	IOBUS2 ⁽³⁴⁾	14	13	13	IO	IOBUS port Data Bit 2.
7	IOBUS3 ⁽³⁴⁾	15	14	14	IO	IOBUS port Data Bit 3.
8	IOBUS4 ⁽³⁴⁾	-	-	15	IO	IOBUS port Data Bit 4.
9	IOBUS5 ⁽³⁴⁾	-	-	16	IO	IOBUS port Data Bit 5.
10	IOBUS6 ⁽³⁴⁾	-	-	17	IO	IOBUS port Data Bit 6.
11	IOBUS7 ⁽³⁴⁾	-	-	18	IO	IOBUS port Data Bit 7.
12	IOBUS8 ⁽³⁴⁾	-	-	19	IO	IOBUS port Data Bit 8.
13	IOBUS9 ⁽³⁴⁾	-	-	20	IO	IOBUS port Data Bit 9.
14	IOBUS10 ⁽³⁴⁾	-	-	22	IO	IOBUS port Data Bit 10.
15	IOBUS11 ⁽³⁴⁾	=	=	23	IO	IOBUS port Data Bit 11.
16	IOBUS12 ⁽³⁴⁾	-	-	24	IO	IOBUS port Data Bit 12.
17	IOBUS13 ⁽³⁴⁾	-	-	25	IO	IOBUS port Data Bit 13.
18	IOBUS14 ⁽³⁴⁾	_	_	26	IO	
19	GND	_		-	-	IOBUS port Data Bit 14. Ground pin
20	IOBUS15 ⁽³⁴⁾	_	_	27	IO	IOBUS port Data Bit 15.
21	IOBUS16 ⁽³⁴⁾	-	-	27	IO	IOBUS port Data Bit 16.
22	IOBUS17 ⁽³⁴⁾	-	46	28	IO	IOBUS port Data Bit 17.
23	IOBUS18 ⁽³⁴⁾	-	45	29	IO	IOBUS port Data Bit 18.
24	IOBUS19 ⁽³⁴⁾	-	48	31	IO	IOBUS port Data Bit 19.
25	IOBUS20 ⁽³⁴⁾	23	31	32	IO	
26	IOBUS21 ⁽³⁴⁾	24 ⁽³⁵⁾	32 ⁽³⁵⁾	39	IO	IOBUS port Data Bit 20. IOBUS port Data Bit 21.
27	IOBUS22 ⁽³⁴⁾	25	33	40	IO	IOBUS port Data Bit 22.
28	IOBUS23 ⁽³⁴⁾	26 ⁽³⁵⁾	34 ⁽³⁵⁾	41	IO	IOBUS port Data Bit 23.
29	IOBUS24 ⁽³⁴⁾	-	35	43	IO	IOBUS port Data Bit 24.
30	IOBUS25 ⁽³⁴⁾	_	36	44	IO	IOBUS port Data Bit 25.
31	IOBUS26 ⁽³⁴⁾	-	37	45	IO	IOBUS port Data Bit 26.
32	IOBUS27 ⁽³⁴⁾	-	38	46	IO	IOBUS port Data Bit 27.
33	IOBUS28 ⁽³⁴⁾	_	41	47	IO	IOBUS port Data Bit 28.
33	IOBUS29 ⁽³⁴⁾	-	42	48	IO	IOBUS port Data Bit 29.
35	GND	_	-	-		10100 port Batta Bit 25.
36	IOBUS30 ⁽³⁴⁾	-	43	49	IO	IOBUS port Data Bit 30.
37	IOBUS31 ⁽³⁴⁾	-	44	50	IO	IOBUS port Data Bit 31.
38	IOBUS32 ⁽³⁴⁾	29	15	51	IO	IOBUS port Data Bit 32.
39	IOBUS33 ⁽³⁴⁾	30	16	52	IO	IOBUS port Data Bit 33.
40	IOBUS34 ⁽³⁴⁾	31	18	55	IO	IOBUS port Data Bit 34.
41	IOBUS35 ⁽³⁴⁾	32	19	56	IO	IOBUS port Data Bit 35.