

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

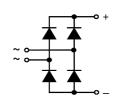
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

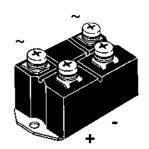
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Single Phase Rectifier Bridge


 $I_{dAV} = 52/72 A$ $V_{RRM} = 800-1800 V$

V _{RSM}	V _{RRM}	Туре	
800	800	VBO 52-08NO7	VBO 72-08NO7
1200	1200	VBO 52-12NO7	VBO 72-12NO7
1400	1400	VBO 52-14NO7	VBO 72-14NO7
1600	1600	VBO 52-16NO7	VBO 72-16NO7
1800	1800	VBO 52-18NO7	VBO 72-18NO7

50

 m/s^2

Symbol	Test Conditions	Maximum Ratings VBO 52 VBO 72			
dAV	$T_{\rm c} = 100^{\circ}$ C, module		52 41	72 49	A
dAV		$T_A = 45^{\circ}C$ ($R_{thCA} = 0.6$ K/W), module			A
I _{FSM}	$T_{VJ} = 45^{\circ}C;$	t = 10 ms (50 Hz), sine	550	750	Α
	$V_R = 0$	t = 8.3 ms (60 Hz), sine	600	820	Α
	$T_{V,I} = T_{V,IM} t = 10 \text{ ms}$	(50 Hz), sine	500	670	A
	$V_{R}^{VS} = 0$	t = 8.3 ms (60 Hz), sine	550	740	Α
l²t	T _{v.1} = 45°C	t = 10 ms (50 Hz), sine	1520	2800	A ² s
	$V_{R}^{V_{S}} = 0$	t = 8.3 ms (60 Hz), sine	1520	2800	A^2s
	$T_{V,I} = T_{V,IM}$	t = 10 ms (50 Hz), sine	1250	2250	A ² s
	$V_{R}^{VS} = 0$	t = 8.3 ms (60 Hz), sine	1250	2250	A^2s
T _{vJ}			-40+	150	°C
T _{VJM}				150	°C
T _{stg}			-40+	125	°C
V _{ISOL}	50/60 Hz, RMS	t = 1 min	2	500	V~
ISOL	$I_{ISOL} \le 1 \text{ mA}$	t = 1 s	30	000	V~
M _d	Mounting torque (M	15)	5 ± 15	5 %	Nm
u	Terminal connection torque (M5)		$5\pm15\%$		Nm
Weight	typ.			160	g

Symbol	Test Conditions	Characteristic Values VBO 52 VBO 72			
Weight	typ.			160	g
M _d	Mounting torque (M5) Terminal connection torque (M5)		5 ± 15 % 5 ± 15 %		Nm Nm
	$I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$		30	000	V~
V _{ISOL}	50/60 Hz, RMS t = 1 m	in	2	500	V~
T _{VJM} T _{stg}			-40+	150 125	°C
T _{vJ}			-40+	150	°C
	VJ VJIVI	ms (50 Hz), sine ms (60 Hz), sine	1250 1250	2250 2250	A²s A²s
l²t		ms (50 Hz), sine ms (60 Hz), sine	1520 1520	2800 2800	A ² s
	$T_{VJ} = T_{VJM} t = 10 \text{ ms}$ (50 Hz) $V_{R} = 0$ $t = 8.3$), sine ms (60 Hz), sine	500 550	670 740	A A
FSM		ms (50 Hz), sine ms (60 Hz), sine	550 600	750 820	A A
dAV	$I_A = 45^{\circ} \text{C} (R_{thCA} = 0.6 \text{ K/VV})$, module	41	49	A

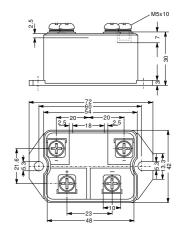
···d	Terminal connection torque (M5) typ.		0 ± 10 /0		
-			5 ± 1	5 %	Nm
Weight			160		g
Symbol	Test Conditions		Charact VBO 52	/alues 72	
I _R	$V_{R} = V_{RRM}; T_{VJ} = 25^{\circ}C$ $V_{R} = V_{RRM}; T_{VJ} = T_{VJM}$	≤ ≤	0.3 5	0.3 5	mA mA
V _F	I _F = 150 A; T _{VJ} = 25°C	≤	1.8	1.6	V
r_{t}	For power-loss calculations only $T_{VJ} = T_{VJM}$		8.0 8	0.8 5	V mΩ
R _{thJC}	per diode per module		1.45 0.36	1.1 0.28	K/W K/W
\mathbf{R}_{thJK}	per diode per module		1.87 0.47	1.52 0.38	K/W K/W
d _s	Creeping distance on surface Creepage distance in air			10 9.4	mm mm

Data according to IEC 60747 refer to a single diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions.

Max. allowable acceleration

Features

- Package with screw terminals
- Isolation voltage 3000 V~
- · Planar passivated chips
- Blocking voltage up to 1800 V
- · Low forward voltage drop
- UL applied


Applications

- Supplies for DC power equipment
- · Input rectifiers for PWM inverter
- · Battery DC power supplies
- Field supply for DC motors

Advantages

- · Easy to mount with two screws
- · Space and weight savings
- · Improved temperature and power cycling

Dimensions in mm (1 mm = 0.0394")

