

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

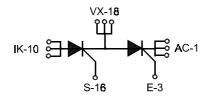
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


Thyristor Modules

ECO-PAC 2

 $I_{TRMS} = 2x180A$ $I_{TAVM} = 2x105A$ $V_{RRM} = 800-1800 V$

Preliminary Data

V _{RSM} V _{DSM}	V _{RRM} V _{DRM} V	Тур
900	800	VCC 105 - 08io7
1300	1200	VCC 105 - 12io7
1500	1400	VCC 105 - 14io7
1700	1600	VCC 105 - 16io7
1900	1800	VCC 105 - 18io7

Symbol	Conditions		Maximum Ratings	
I _{TRMS}			180	Α
I _{TAVM}	$T_{C} = 85^{\circ}C; 180^{\circ} \text{ sine}$		105	Α
I _{TSM}	$T_{VJ} = 45^{\circ}C; V_{R} = 0 V;$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	2250 2400	A A
	$T_{VJ} = 125^{\circ}C; V_{R} = 0 V;$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	2000 2150	A A
l ² dt	$T_{VJ} = 45^{\circ}C; V_{R} = 0 V;$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	25300 23900	A²s A²s
	$T_{VJ} = 125^{\circ}C; V_{R} = 0 V;$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine	20000 19100	A²s A²s
(di/dt) _{cr}	$T_{VJ} = 125^{\circ}C;$ $f = 50 \text{ Hz}; t_p = 200 \mu\text{s};$ $V_D = {}^2/_3V_{DRM};$	repetitive, $I_T = 250 \text{ A}$	150	A/µs
	$I_G = 0.45 \text{ A}$ $di_G/dt = 0.45 \text{ A/}\mu\text{s}$;	non repetitive, $I_T = I_{TAVM}$	500	A/μs
(dv/dt) _{cr}	$T_{VJ} = 125^{\circ}C; V_{DR} = {}^{2}/_{3}V_{DR} = 0$ $R_{GK} = \infty$, method 1 (lin		1000	V/µs
P_{GM}	$T_{VJ} = 125$ °C; $I_T = I_{TAVM}$;	$t_{P} = 30 \text{ ms}$ $t_{P} = 300 \text{ ms}$	≤ 10 ≤ 5	W
P_{GAVM}			0.5	W
V _{RGM}			10	V
T _{VJ} T _{VJM} T _{stg}			-40 + 125 125 -40 + 125	°C °C °C
V _{ISOL}	50/60 Hz, RMS	t = 1 min	3000	V ~

t = 1 s

(M4)

Features

- Isolation voltage 3600 V~
- Planar glass passivated chips
- · Low forward voltage drop
- · Leads suitable for PC board soldering

Applications

- · DC motor control
- · Light and temperature control
- · Softstart AC motor controller
- · Solid state switches

Advantages

V ~

Nm

lb.in.

g

3600

1.5 - 2.0

14 - 18

26

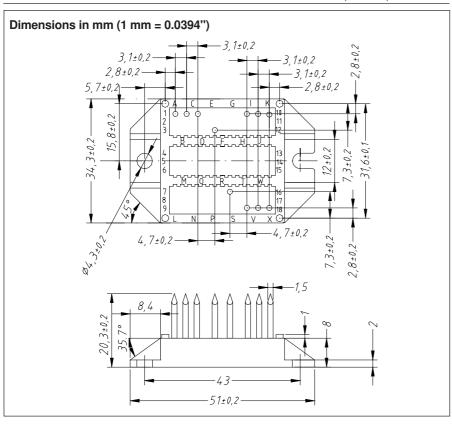
- Easy to mount with two screws
- · Space and weight savings
- Improved temperature and power cycling
- · High power density
- · Small and light weight

Data according to IEC 60747 refer to a single thyristor unless otherwise stated IXYS reserves the right to change limits, test conditions and dimensions.

typ.

 M_d

Weight


 $I_{ISOL} \leq 1 \text{ mA}$

Mounting torque

Component

Symbol	Conditions Ch		aracteristic Values typ. max.		
I _D , I _R	$T_{VJ} = 125^{\circ}C; V_R = V_{RRM}; V_D = V_{DRM}$			5	mA
V _T	I _T = 300 A; T _{VJ} = 25°C			1.5	V
V _{TO}	For power-loss calculations only			0.8 2.4	V mΩ
V_{GT}	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$			1.5 1.6	V
I _{GT}	$V_D = 6 \text{ V};$ $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = -40^{\circ}\text{C}$			150 200	mA mA
V _{GD}	$T_{VJ} = 125^{\circ}C; V_{D} = \frac{2}{3}V_{DRM}$ $T_{VJ} = 125^{\circ}C; V_{D} = \frac{2}{3}V_{DRM}$			0.2 10	V mA
I _L	$T_{VJ} = 25^{\circ}\text{C}; t_{P} = 10 \text{ ms}$ $I_{G} = 0.45 \text{ A}; di_{G}/dt = 0.45 \text{ A}/\mu\text{s}$			450	mA
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; R_{GK} = \infty$			200	mA
t _{gd}	$T_{VJ} = 25^{\circ}C; V_{D} = \frac{1}{2} V_{DRM}$ $I_{G} = 0.45 \text{ A}; di_{G}/dt = 0.45 \text{ A}/\mu s$			2	μs
R _{thJC}	per Thyristor; DC				K/W K/W
R_{thCH}	per module per Thyristor; DC per module		0,2 0,1	0.13	K/W K/W
d _s d _a a	Creeping distance on surface Creeping distance in air Max. allowable acceleration			11.2 5.0 50	mm mm m/s²

