

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

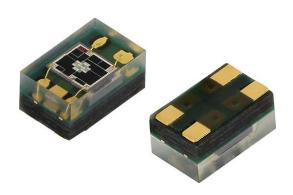
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


HALOGEN FREE

GREEN

Vishay Semiconductors

UVA and UVB Light Sensor with I²C Interface

DESCRIPTION

The VEML6075 senses UVA and UVB light and incorporates photodiode, amplifiers, and analog / digital circuits into a single chip using a CMOS process. When the UV sensor is applied, it is able to detect UVA and UVB intensity to provide a measure of the signal strength as well as allowing for UVI measurement.

The VEML6075 provides excellent temperature compensation capability for keeping the output stable under changing temperature. VEML6075's functionality is easily operated via the simple command format of I²C (SMBus compatible) interface protocol. VEML6075's operating voltage ranges from 1.7 V to 3.6 V. VEML6075 is packaged in a lead (Pb)-free 4 pin OPLGA package which offers the best market-proven reliability.

FEATURES

- Package type: surface mount
- Dimensions (L x W x H in mm): 2.0 x 1.25 x 1.0
- Integrated modules: ultraviolet sensor (UV), and signal conditioning IC
- · Converts solar UV light intensity to digital data
- · Excellent UVA and UVB sensitivity
- Reliable performance of UV radiation measurement under long time solar UV exposure

- UVA and UVB individual channel solution
- Low power consumption I²C protocol (SMBus compatible) interface
- Package: OPLGA
- Temperature compensation: -40 °C to +85 °C
- Output type: I²C bus
- Operation voltage: 1.7 V to 3.6 V
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Handheld device
- Notebook
- Consumer device
- Industrial and medical application

PRODUCT SUMMARY								
PART NUMBER	OPERATING VOLTAGE RANGE (V)	I ² C BUS VOLTAGE RANGE (V)	PEAK SENSITIVITY UVA, UVB (nm)	RANGE OF SPECTRAL BANDWIDTH $\lambda_{0.5}$ (nm)	OUTPUT CODE			
VEML6075	1.7 to 3.6	1.7 to 3.6	365, 330	± 10	16 bit, I ² C			

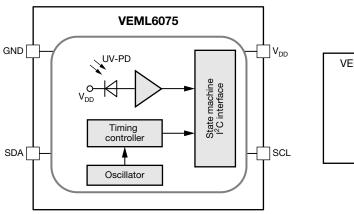
Note

(1) Adjustable through I²C interface

ORDERING INFORMATION			
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS
VEML6075	Tape and reel	MOQ: 2500 pcs	2.0 mm x 1.25 mm x 1.0 mm

Note

(1) MOQ: minimum order quantity



ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER TEST CONDITION SYMBOL MIN. MAX. UNIT								
Supply voltage		V_{DD}	0	3.6	V			
Operation temperature range		T _{amb}	-40	+85	°C			
Storage temperature range		T _{stg}	-40	+85	°C			

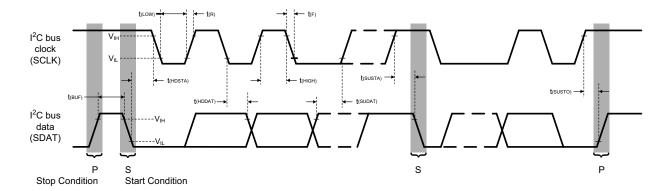
RECOMMENDED OPERATING CONDITIONS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION SYMBOL MIN. MAX. UNIT							
Supply voltage		V_{DD}	1.7	3.6	V			
Operation temperature range		T _{amb}	-40	+85	°C			
I ² C bus operating frequency		f _(I2CCLK)	10	400	kHz			

PIN DESCRIPTIONS			
PIN ASSIGNMENT	SYMBOL	TYPE	FUNCTION
1	GND	I	Ground
2	SDAT	I / O (open drain)	I ² C data bus data input / output
3	SCLK	I	I ² C digital bus clock input
4	V_{DD}	I	Power supply input

BLOCK DIAGRAM

VEML6075 pin-out assignment				
① GND				
② SDAT				
③ SCLK				
\bigcirc V_{DD}				

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER		TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Supply operation vo	oltage		V_{DD}	1.7	-	3.6	V	
Supply current		$V_{DD} = 1.8 \text{ V}$	I _{DD}	-	480	-	μΑ	
I ² C signal input	Logic high	V _{DD} = 3.3 V	V _{IH}	1.5	-	-	V	
120 signai input	Logic low	v _{DD} = 3.3 v	V _{IL}	-	-	0.8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
I ² C signal input	Logic high	V _{DD} = 2.6 V	V _{IH}	1.4	-	-	V	
I-C signal input	Logic low	V _{DD} = 2.0 V	V _{IL}	=	-	0.6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Operating temperat	ture		T _{amb}	-40	-	+85	°C	
Shutdown current		Light condition = dark; V _{DD} = 1.8 V, T _{amb} = 25 °C	I _{DD} (SD)	-	800	-	nA	
UVA responsivity		$I_T = 50 \text{ ms}^{(1)}$		=	0.93	-	counts/µW/cm ²	
UVB responsivity		I _T = 50 ms ⁽²⁾		-	2.1	-	counts/µW/cm²	
Visible / infrared res	sponse	W-LED / IRED (940 nm)		-	0.5	< 1	%	


Notes

⁽¹⁾ Nichia NCSU033X (365 nm)

⁽²⁾ UVTOP310TO39HS (315 nm)

I ² C TIMING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
DADAMETED	CYMPOL	STANDA	RD MODE	FAST			
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNIT	
Clock frequency	f _(SMBCLK)	10	100	10	400	kHz	
Bus free time between start and stop condition	t _(BUF)	4.7	-	1.3	-	μs	
Hold time after (repeated) start condition; after this period, the first clock is generated	t _(HDSTA)	4.0	-	0.6	-	μs	
Repeated start condition setup time	t _(SUSTA)	4.7	-	0.6	-	μs	
Stop condition setup time	t _(SUSTO)	4.0	-	0.6	-	μs	
Data hold time	t _(HDDAT)	-	3450	-	900	ns	
Data setup time	t _(SUDAT)	250	-	100	-	ns	
I ² C clock (SCK) low period	t _(LOW)	4.7	-	1.3	-	μs	
I ² C clock (SCK) high period	t _(HIGH)	4.0	-	0.6	-	μs	
Clock / data fall time	t _(F)	-	300	-	300	ns	
Clock / data rise time	t _(R)	-	1000	-	300	ns	

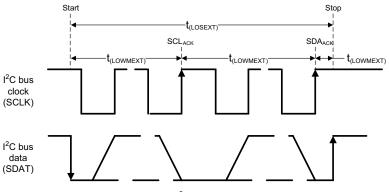


Fig. 1 - I²C Bus Timing Diagram

PARAMETER TIMING INFORMATION

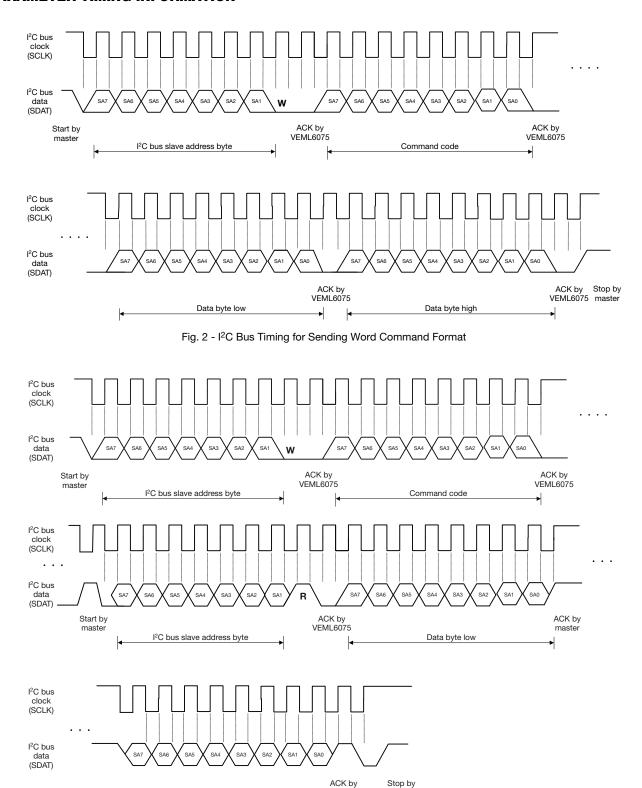
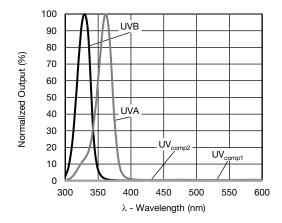



Fig. 3 - I²C Timing for Receive Word Command Format

Data byte high

master

TYPICAL PERFORMANCE CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

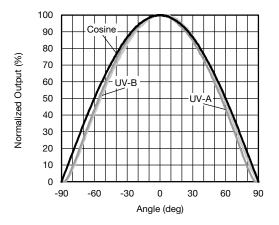


Fig. 4 - Normalized Spectral Response

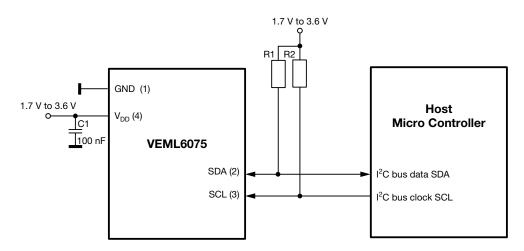
Fig. 5 - Normalized Output vs. View Angle

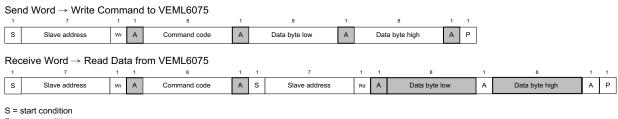
APPLICATION INFORMATION

Pin Connection with the Host

The configuration and data registers of the VEML6075 are accessed via the I²C interface. The hardware schematic is shown below in fig. 6.

The 0.1 μF capacitor near the V_{DD} pin is used for power supply noise rejection. The 2.2 $k\Omega$ is suitable for the pull high resistor of I^2C .




Fig. 6 - Hardware Pin Connection Diagram

Digital Interface

The VEML6075 contains a CONF register (00h) used for operation control and parameter setup. Measurement results are stored in four separate registers, one each for UVA, UVD, UVB, UV_{comp1}, and UV_{comp2} (07h to 0Bh respectively). All registers are accessible via I²C communication. Fig. 7 shows the basic I²C communication with the VEML6075. Each of the registers in the VEML6075 are 16 bit wide, so 16 bit should be written when a write command is sent, and 16 bit should be read when a read command is sent.

The built in I²C interface is compatible with I²C modes "standard" and "fast": 100 kHz to 400 kHz

P = stop condition

Fig. 7 - Command Protocol Format

Note

• Please note the repeat start condition when data is read from the sensor. A stop condition should not be sent here.

Slave Address and Function Description

VEML6075 uses 0x10 slave address for 7-bit I²C addressing protocol. VEML6075 has 16-bit resolution for each channel (UVA, UVB, UV_{comp1}, and UV_{comp2}).

TABLE 1 - VEML6075 COMMAND CODE AND REGISTER DESCRIPTION										
COMMAND CODE	DATE BYTE LOW / HIGH	REGISTER NAME	R/W	DEFAULT VALUE	FUNCTION DESCRIPTION					
00h	L	UV_CONF	R/W	0x00	UV integration time, function enable and disable					
oon	Н	Reserved	R/W	0x00	Reserved					
01h	L	Reserved	R/W	0x00	Reserved					
UIII	Н	Reserved	R/W	0x00	Reserved					
02h	L	Reserved	R/W	0x00	Reserved					
0211	Н	Reserved	R/W	0x00	Reserved					
03h	L	Reserved	R/W	0x00	Reserved					
USII	Н	Reserved	R/W	0x00	Reserved					
04h	L	Reserved	R/W	0x00	Reserved					
0411	Н	Reserved	R/W	0x00	Reserved					
05h	L	Reserved	R/W	0x00	Reserved					
USII	Н	Reserved	R/W	0x00	Reserved					
06h	L	Reserved	R/W	0x00	Reserved					
0611	Н	Reserved	R/W	0x00	Reserved					
07h	L	UVA_Data	R	0x00	UVA LSB output data					
0711	Н	UVA_Data	R	0x00	UVA MSB output data					
08h	L	Reserved	R	0x00	Reserved					
0611	Н	Reserved	R	0x00	Reserved					
09h	L	UVB_Data	R	0x00	UVB LSB output data					
0911	Н	UVB_Data	R	0x00	UVB MSB output data					
0Ah	L	UVCOMP1_Data	R	0x00	UV _{comp1} LSB output data					
UAII	Н	UVCOMP1_Data	R	0x00	UV _{comp1} MSB output data					
0Bh	L	UVCOMP2_Data	R	0x00	UV _{comp2} LSB output data					
וומט	Н	UVCOMP2_Data	R	0x00	UV _{comp2} MSB output data					
0Ch	L	ID	R	0x26	Device ID LSB					
0011	Н	ID	R	0x00	Device ID MSB					

A = acknowledge

Shaded area = VEML6075 acknowledge

Command Register Format

The VEML6075 has 16-bit registers used to set up the measurements as well as pick up the measurement results. The description of each command format is shown in the following tables.

TABLE 2 - REGISTER UV_CONF DESCRIPTION									
REGISTER NA	ME	CO	MMAND COD	E: 0x00_L (0x	00 DATA BYT	E LOW) OR 02	к00_Н (0x00 D	ATA BYTE HI	GH)
COMMAND	BIT	7	6	5	4	3	2	1	0
REGISTER: UV	_CONF			COMMAND	CODE: 0x00_	L (0x00 DATA	BYTE LOW)		
COMMAND	BIT				Desci	ription			
Reserved	7	0							
UV_IT	6:4		(0:0:0) = 50 ms, (0:0:1) = 100 ms, (0:1:0) = 200 ms, (0:1:1) = 400 ms, (1:0:0) = 800 ms, (1:0:1) = reserved, (1:1:0) = reserved, (1:1:0) = reserved.						
HD	3	0 = normal o	0 = normal dynamic setting, 1 = high dynamic setting						
UV_TRIG	2	With UV_AF	0 = no active force mode trigger, 1 = trigger one measurement With UV_AF = 1 the VEML6075 conducts one measurement every time the host writes UV_Trig = 1. This bit returns to "0" automatically.						
UV_AF	1	0 = active force mode disable (normal mode), 1 = active force mode enable							
SD	0	0 = power o	0 = power on, 1 = shut down						

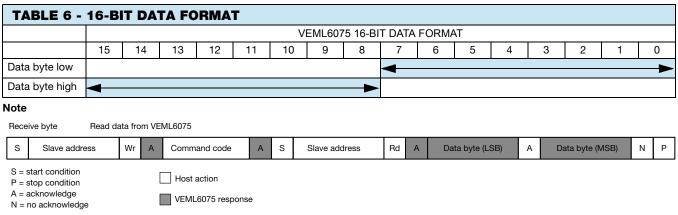

TABLE 3 - REGISTER 00_H DESCRIPTION						
REGISTER: reserved		COMMAND CODE: 0x00_H (0x00 DATA BYTE HIGH)				
COMMAND	BIT	Description				
Reserved	7:0	Default = (0 : 0 : 0 : 0 : 0 : 0 : 0)				

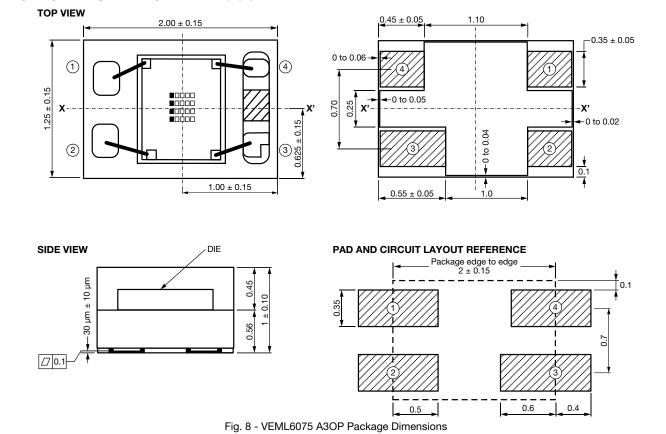
TABLE 4 - REGISTER 01_L TO 06_L AND 08_L; 01_H TO 06_H AND 08_H DESCRIPTION						
REGISTER: reserved		COMMAND CODE: 0x01_L TO 0x06_L AND 0x08_L (0x01 TO 0x06 AND 0x08_L DATA BYTE LOW) COMMAND CODE: 0x01_H TO 0x06_H AND 0x08_H (0x01 TO 0x06 AND 0x08_H DATA BYTE HIGH)				
REGISTER	BIT	Description				
Reserved	7:0	Default = (0 : 0 : 0 : 0 : 0 : 0 : 0)				
Reserved	7:0	Default = (0 : 0 : 0 : 0 : 0 : 0 : 0)				

TABLE 5 - READ OUT COMMAND CODES DESCRIPTION						
REGISTER	COMMAND CODE	BIT	DESCRIPTION			
UVA DATA	0x07_L (0x07 data byte low)	7:0	0x00 to 0xFF, UVA LSB output data			
OVA_DATA	0x07_H (0x07 data byte high)	7:0	0x00 to 0xFF, UVA MSB output data			
UVB DATA	0x09_L (0x09 data byte low)	7:0	0x00 to 0xFF, UVB LSB output data			
OVB_DATA	0x09_H (0x09 data byte high)	7:0	0x00 to 0xFF, UVB MSB output data			
UVCOMP1 DATA	0x0A_L (0x0A data byte low)	7:0	0x00 to 0xFF, UV _{comp1} LSB output data			
OVCOMPT_DATA	0x0A_H (0x0A data byte high)	7:0	0x00 to 0xFF, UV _{comp1} MSB output data			
UVCOMP2 DATA	0x0B_L (0x0B data byte low)	7:0	0x00 to 0xFF, UV _{comp2} LSB output data			
OVCOWFZ_DATA	0x0B_H (0x0B data byte high)	7:0	0x00 to 0xFF, UV _{comp2} MSB output data			
	0x0C_L (0x0C data byte low)	7:0	Default = 0x26, device ID LSB byte			
ID	0x0C_H (0x0C data byte high)	7:6 5:4 3:0	Company code = 00, (0 : 0), slave address = 0x20, version code (0 : 0 : 0 : 0) = VEML6075 CS, device ID MSB byte			

Data Access

VEML6075 has 16-bit high resolution sensitivity for each UV channel. One byte is the LSB and the other byte is the MSB. The host needs to follow the read word protocol as shown in fig. 7. The data format shows as below.

• Data byte low represents LSB and data byte high represents MSB.


Data Auto-Memorization

VEML6075 keeps the last results read. These values will remain in the registers, and can be read from these registers, until the device wakes up and a new measurement is made.

UV-Index Calculation

In order to use the result data to calculate the UV-Index, please refer to the "Designing the VEML6075 into an Application" application note (www.vishay.com/doc?84339).

PACKAGE INFORMATION in millimeters

RECOMMENDED STORAGE AND REBAKING CONDITIONS							
PARAMETER	CONDITIONS	MIN.	MAX.	UNIT			
Storage temperature		5	50	°C			
Relative humidity		-	60	%			
Open time		-	168	h			
Total time	From the date code on the aluminized envelope (unopened)	-	12	months			
Rebaking	Tape and reel: 60 °C	-	22	h			
nebaking	Tube: 60 °C	-	- 22	h			

RECOMMENDED INFRARED REFLOW

Soldering conditions which are based on J-STD-020 C.

IR REFLOW PROFILE CONDITION							
PARAMETER	CONDITIONS	TEMPERATURE	TIME				
Peak temperature		255 °C + 0 °C / - 5 °C (max.: 260 °C)	10 s				
Preheat temperature range and timing		150 °C to 200 °C	60 s to 180 s				
Timing within 5 °C to peak temperature		-	10 s to 30 s				
Timing maintained above temperature / time		217 °C	60 s to 150 s				
Timing from 25 °C to peak temperature		-	8 min (max.)				
Ramp-up rate		3 °C/s (max.)	=				
Ramp-down rate		6 °C/s (max.)	=				

Recommend Normal Solder Reflow is 235 °C to 255 °C

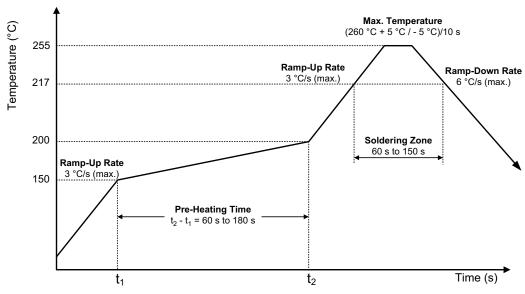


Fig. 9 - VEML6075 OPLGA Solder Reflow Profile Chart

RECOMMENDED IRON TIP SOLDERING CONDITION AND WARNING HANDLING

- 1. Solder the device with the following conditions:
 - 1.1. Soldering temperature: 400 °C (max.)
 - 1.2. Soldering time: 3 s (max.)
- 2. If the temperature of the method portion rises in addition to the residual stress between the leads, the possibility that an open or short circuit occurs due to the deformation or destruction of the resin increases.
- 3. The following methods: VPS and wave soldering, have not been suggested for the component assembly.
- 4. Cleaning method conditions:
 - 4.1. Solvent: methyl alcohol, ethyl alcohol, isopropyl alcohol
 - 4.2. Solvent temperature < 45 °C (max.)
 - 4.3. Time: 3 min (min.)

TAPE PACKAGING INFORMATION in millimeters

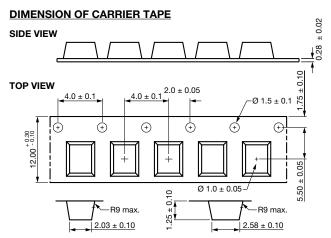


Fig. 10 - VEML6070 A3OP Package Carrier Tape

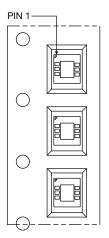


Fig. 11 - Taping Direction

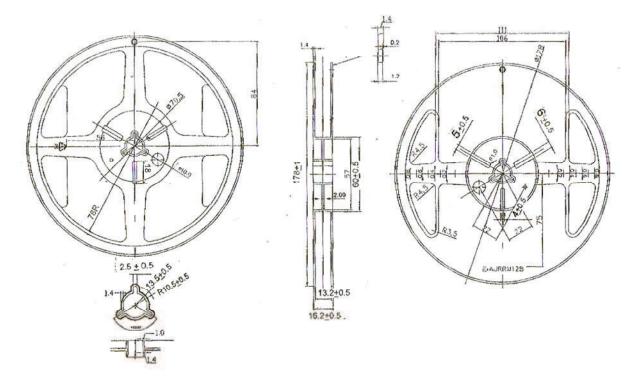


Fig. 12 - Reel Dimension

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.