

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

date 04/10/2017

page 1 of 12

SERIES: VFB600 **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 700 W isolated output
- industry standard full brick package
- 2:1 input range (18~36 Vdc, 36~75 Vdc)
- single output from 12~48 Vdc
- 1,500 Vdc isolation
- over current, over temperature, over voltage, and short circuit protections
- remote on/off
- efficiency up to 92%

MODEL		put tage	output voltage	output current	output power	ripple and noise¹	efficiency
	typ (Vdc)	range (Vdc)	(Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
VFB600-D24-S12	24	18~36	12	50	600	120	88
VFB600-D24-S24	24	18~36	24	25	600	240	90
VFB600-D24-S28	24	18~36	28	21.5	600	280	90
VFB600-D24-S32	24	18~36	32	19	600	320	91
VFB600-D24-S48	24	18~36	48	12.5	600	480	91
VFB600-D48-S12	48	36~75	12	50	600	120	90
VFB600-D48-S24	48	36~75	24	25	600	240	92
VFB600-D48-S28	48	36~75	28	25	700	280	91
VFB600-D48-S32	48	36~75	32	19	600	320	92
VFB600-D48-S48	48	36~75	48	12.5	600	480	92

Notes:

- 1. Ripple and noise measured at full load, 20 MHz BW with 10 μF tantalum and 1 μF ceramic capacitor across the output.
- 2. An external input capacitor of 220 μ F is recommended to reduce input ripple voltage. 3. All specifications measured at nominal line, full load, and 25°C unless otherwise specified.

PART NUMBER KEY

VFB600 - DXX - SXX X Base Number Remote On/Off Control Input Voltage Output Voltage "blank" = positive logic N = negative logic

INPUT

parameter	conditions/de	escription	min	typ	max	units
operating input voltage	24 Vdc input m 48 Vdc input m		18 36	24 48	36 75	Vdc Vdc
	24 Vdc input	power up power down		17 16		Vdc Vdc
under voltage shutdown	48 Vdc input	power up power down		35 33		Vdc Vdc
	24 Vdc input	power up power down		38 40		Vdc Vdc
over voltage shutdown	48 Vdc input	power up power down		77 80		Vdc Vdc
start-up time					250	ms
	positive logic	models ON (0~0.01 mA) models OFF (1.0~10 mA)				
on/off¹	negative logic	models ON (1.0~10 mA)				
	negative logic	models OFF (0~0.01 mA)				
filter	pi filter	·				
input fuse		y fuse for 24 Vin models, y fuse for 48 Vin models				
Note: 1. See application notes.						

OUTPUT

parameter	conditions/description	min	typ	max	units
output capacitance ²	12 Vdc output models all other models	470 470		10,000 5,000	μF μF
line regulation ²	from low line to high line			±0.2	%
load regulation ²	from full load to no load			±0.5	%
voltage accuracy ²				±1.5	%
load share accuracy	from 50~100% load		±10		%
adjustability		60		110	%
switching frequency	48 Vdc input: 12 Vdc, 28 Vdc, 32 Vdc models all other models		300 250		kHz kHz
transient response	25% load step change			500	μs
temperature coefficient				±0.03	%/°C
power good (IOC)	Vout ready: low level, sink current Vout not ready: open drain output, applied voltage			20 50	mA V
auxiliary output voltage/current	10 ±3 Vdc, 20 mA max.				

Note: $\ensuremath{\mathsf{2}}.$ Minimum capacitor values are required on the output to maintain the specified regulation.

PROTECTIONS

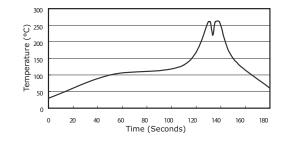
parameter	conditions/description	min	typ	max	units
short circuit protection	continuous				
over current protection		110		150	%
over voltage protection		115		140	%
over temperature protection	shutdown		110		°C

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	for 1 minute, input to output, input to case, or output to case	1,500			Vdc
isolation resistance		10			MΩ
isolation capacitance			4,000		pF
safety approvals	UL 60950-1				
MTBF	as per MIL-HDBK-217F at full load, GB, 25 °C		450,000		hours
RoHS	2011/65/EU (CE)				

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating case temperature	see derating curve	-40		100	°C
storage temperature		-55		105	°C
humidity	non-condensing			95	%

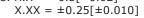

SOLDERABILITY

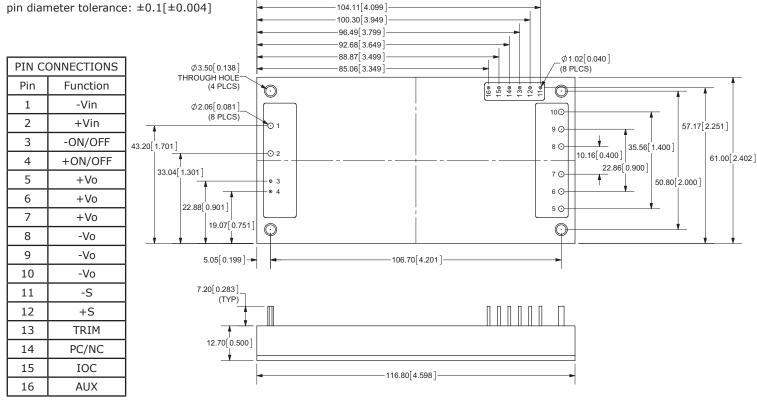
parameter	conditions/description	min	typ	max	units
wave soldering	see wave soldering profile			260	°C

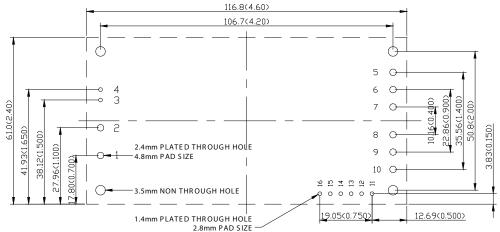
Notes:

- 1. Soldering materials: Sn/Cu/Ni

- 1. Soldering materials: Sn/Cu/Ni
 2. Ramp up rate during preheat: 1.4°C/s (from 50°C to 100°C)
 3. Soaking temperature: 0.5°C/s (from 100°C to 130°C), 60±20 seconds
 4. Peak temperature: 260°C, above 250°C for 3~6 seconds
 5. Ramp down rate during cooling: -10°C/s (from 260°C to 150°C)

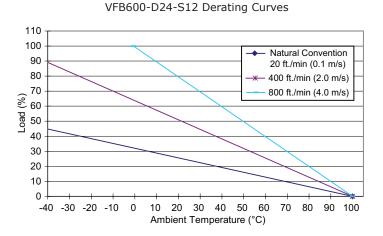

MECHANICAL

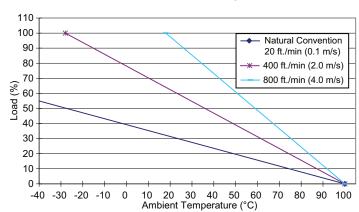

parameter	conditions/description	min	typ	max	units
dimensions	116.8 x 61.0 x 12.7(4.60 x 2.40 x 0.50 inch)				mm
case material	aluminum baseplate with plastic case				
weight			220		g


MECHANICAL DRAWING

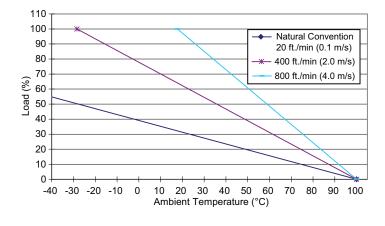
units: mm[inch]

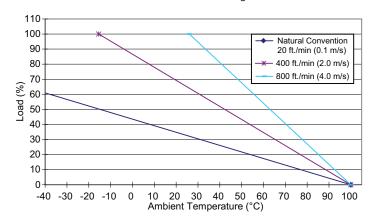
tolerance: $X.X = \pm 0.5[\pm 0.02]$ $X.XX = \pm 0.25[\pm 0.010]$

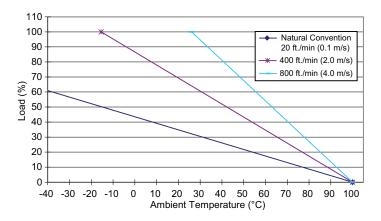


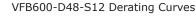

PCB Layout Top View

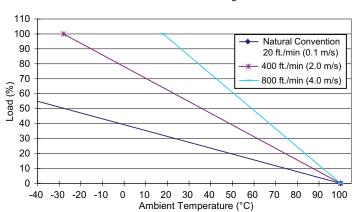
DERATING CURVES



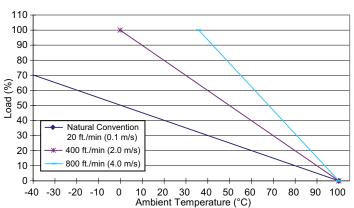

VFB600-D24-S24 Derating Curves


VFB600-D24-S28 Derating Curves

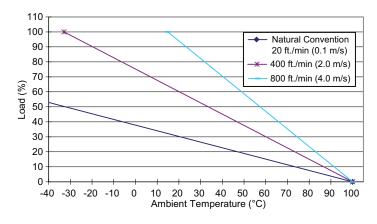

VFB600-D24-S32 Derating Curves

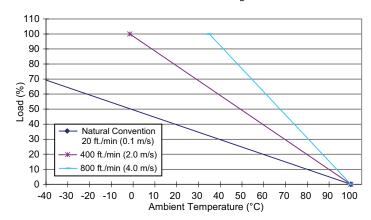


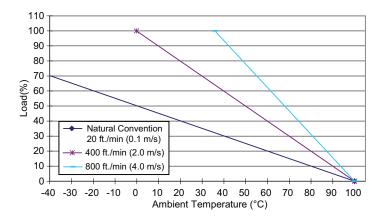
VFB600-D24-S48 Derating Curves

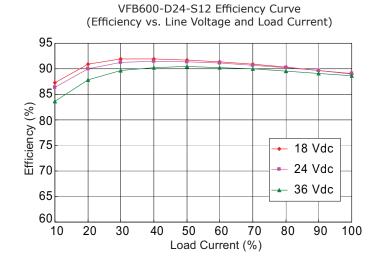


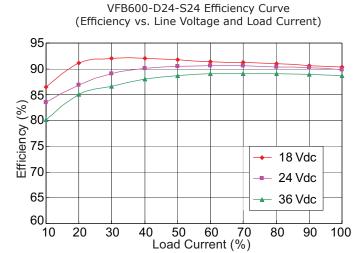
DERATING CURVES (CONTINUED)

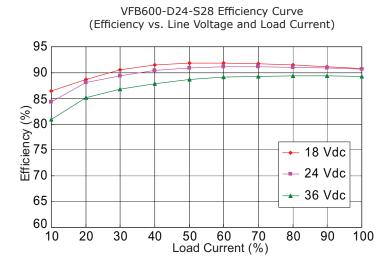


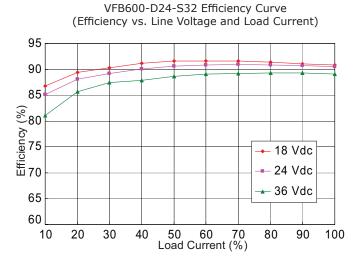

VFB600-D48-S24 Derating Curves

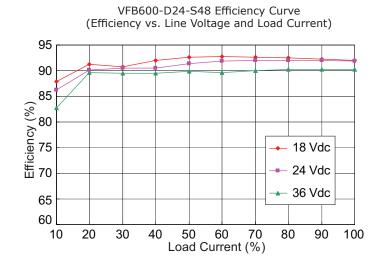

VFB600-D48-S28 Derating Curves

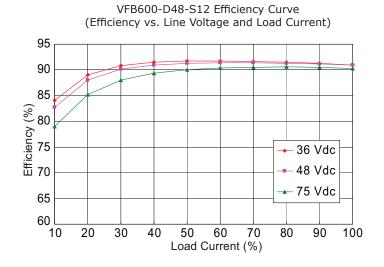

VFB600-D48-S32 Derating Curves

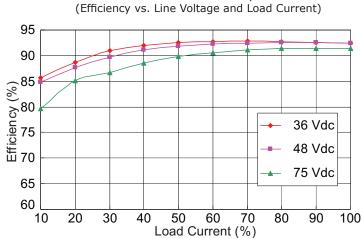


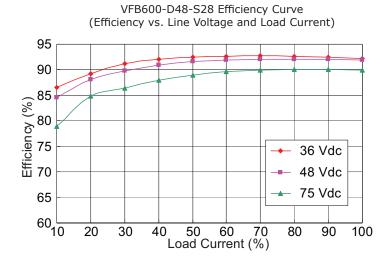

VFB600-D48-S48 Derating Curves

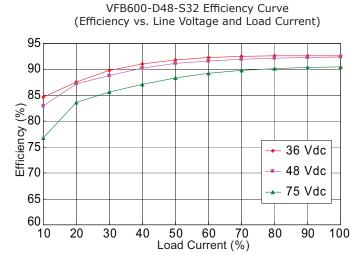


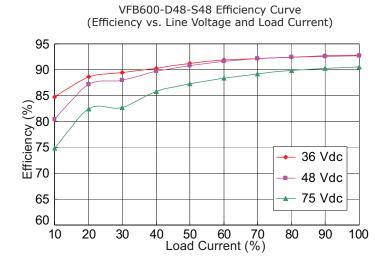

EFFICIENCY CURVES








EFFICIENCY CURVES (CONTINUED)



VFB600-D48-S24 Efficiency Curve

APPLICATION NOTES

Parallel Operation

The VFB600 series is designed for parallel operation. When in parallel the load current can be shared equally between the two modules by connecting their PC pins. The VFB600 can be setup in two different modes to achieve parallel operation. The standard parallel operation is suitable when load cannot be handled by a single unit, whereas the N+1 redundant operation is suitable for loads when backup power is required.

Figure 1 Standard Parallel Connection

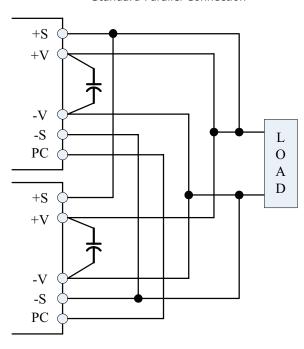


Figure 3 N+1 Redundant Connection

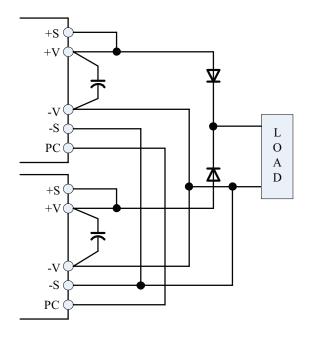


Figure 2 Parallel Connection With Programmed And Adjustable Output

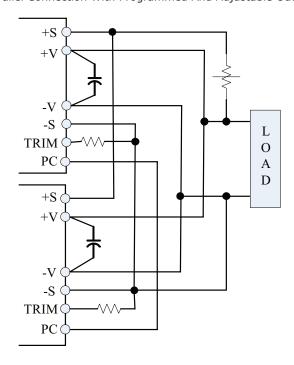
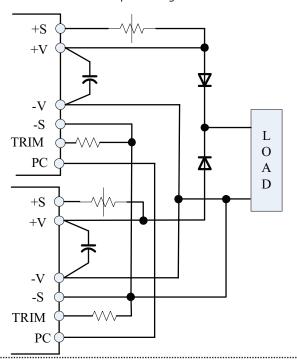



Figure 4 N+1 Redundant Connection With Programmed Output And Adjustable Output Voltage

APPLICATION NOTES (CONTINUED)

Output Voltage Trimming

Leave open if not used.

Figure 5

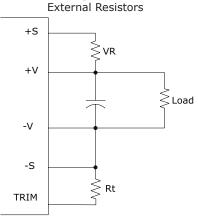
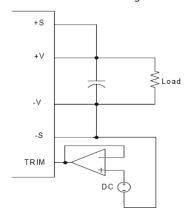



Figure 6 External DC Voltage

Trim-Up/Trim-Down Formulas

$$Vf = \frac{1.24 \times (\frac{Rt \times 33}{})}{Rt + 33}$$

$$7.68 + (\frac{Rt \times 33}{})$$

$$Rt + 33$$

$$Vout = (Vo + VR) \times Vf$$

Note: Rt = $6.8 \text{ k}\Omega$

 ${\rm V}_{\rm O}$ is the nominal output voltage

 V_{OUT} is the desired output voltage (up or down) VR is the trim resistor in $k\Omega$

Trim-Up/Trim-Down Formula

Vout =
$$V_T \times V_O$$

Note: $\boldsymbol{V}_{\!\scriptscriptstyle T}$ is the trim terminal voltage $V_0^{'}$ is the nominal output voltage

 V_{OUT} is the desired output voltage (up or down)

ON/OFF Control

The converter's ON/OFF function can be controlled from the input side or from the output side. The maximum current through the ON/OFF pin is 10 mA. The resistor value has to be set appropriately to avoid the maximum current through the ON/OFF pins. The remote on/off control has to be connected for the converter to operate.

(B)

(A) Controlling the ON/OFF terminal from the input side. Recommended R1 value is 30 k Ω (0.5 W) for 48V_{IN} and 15 k Ω (0.25 W) for 24V_{IN}

Controlling the ON/OFF terminal from the output side. Recommended R2 value is $5.1 \text{ k}\Omega \text{ (0.1 W)}$

Figure 7

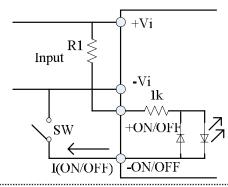
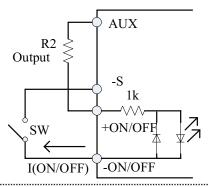
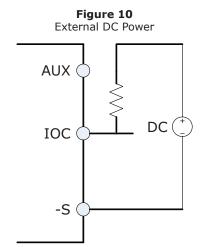



Figure 8

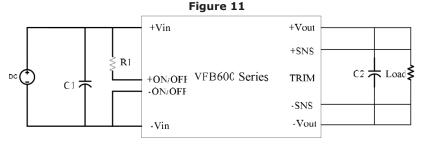


APPLICATION NOTES (CONTINUED)

4. IOC Signal

Normal and abnormal operation of the converter can be monitored by using the I.O.C signal. Output of this signal monitor is located at the secondary side and is open collector output, you can use the signal by the internal aux power supply or the the external DC supply as the following figures, the ground reference is the -Sense. This signal is LOW when the converter is normally operating and HIGH when the converter is disabled or when the converter is abnormally operating.

Figure 9 Internal AUX Power AUX IOC -S



Output Remote Sensing

This series has the capability to remotely sense both lines of its output. This feature moves the effective output voltage regulation point from the output of the unit to the point of connection of the remote sense pins. This feature automatically adjusts the real output voltage in order to compensate for voltage drops in distribution and maintain a regulated voltage at the point of load. The voltage range of this is:

 $\lceil (+Vout) - (-Vout) \rceil - \lceil (+Sense) - (-Sense) \rceil \le 10\%$ of the Vout nominal.

If the sense feature is not used, the sense pins should be connected locally to the respective Vout pins. Please note that although the output voltage can be increased by both the remote sense and by the trim, the maximum increase for the output voltage is not the sum of both.

Test Configuration

Figure 12 +Vin +Vout +S +ON/OFF TRIM C1 ON/OFF Load -Vout

Table 1

Reco	Recommended External components			
C1	220 μF/100 V			
C2	470 μF/100 V			

REVISION HISTORY

rev.	description	date
1.0	initial release	06/27/2011
1.02	adjustability note added, V-Infinity branding removed	08/07/2012
1.03	updated spec	04/01/2013
1.04	added UL approvals to 24 Vdc and 48 Vdc output models	03/05/2014
1.05	added application note information	04/10/2017

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.