

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

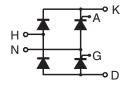
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Single Phase Rectifier Bridge

 $I_{dAV} = 36 A$ $V_{RRM} = 1600 V$

Preliminary data

1700	1600	VGO 36-16io7
V	V	
$oldsymbol{V}_{RSM} \ oldsymbol{V}_{DSM}$	$oldsymbol{V}_{RRM}$	Туре

18

g

Symbol	Test Conditions		Maxi	mum Ra	itings
I _{dAV} * I _{dAVM} * I _{FRMS} , I _{TRMS}	T _H = 85°C, module module per leg			36 40 31	A A A
I _{FSM} , I _{TSM}	$T_{VJ} = 45^{\circ}C;$ $V_{R} = 0 V$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine		320 350	A A
	$T_{VJ} = T_{VJM}$ $V_{R} = 0 V$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine		280 310	A A
l²t	$T_{VJ} = 45^{\circ}C$ $V_{R} = 0 \text{ V}$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine		500 520	A ² s A ² s
	$T_{VJ} = T_{VJM}$ $V_{R} = 0 V$	t = 10 ms (50 Hz), sine t = 8.3 ms (60 Hz), sine		390 400	A ² s A ² s
(di/dt) _{cr}	$T_{VJ} = 125^{\circ}C$ f = 50 Hz, $t_p = 200 \mu s$ $V_D = 2/3 V_{DRM}$	repetitive, $I_T = 50 \text{ A}$		150	A/μs
	$I_{G} = 0.3 \text{ A},$ $di_{G}/dt = 0.3 \text{ A}/\mu\text{s}$	non repetitive, $I_T = 1/2 \cdot I_C$	IAV	500	A/μs
(dv/dt) _{cr}	$T_{VJ} = T_{VJM}$; $V_{DR} = 2/3 V_{DRM}$ $R_{GK} = \infty$; method 1 (linear voltage rise)			1000	V/μs
V _{RGM}				10	V
P _{GM}	$T_{VJ} = T_{VJM}$ $I_{T} = I_{TAVM}$	t _p = 30 μs t _p = 500 μs t _p = 10 ms	≤ ≤ ≤	10 5 1	W W W
P _{GAVM}		P		0.5	W
T _{VJ} T _{VJM}			-40	125	°°° °°° °°°° °°°°
T _{stg} V _{ISOL}	50/60 Hz, RMS I _{ISOL} ≤ 1 mA	t = 1 min t = 1 s		2500 3000	V~ V~
M _d	Mounting torque (M4)		1.5 - 2 14 - 18	Nm lb.in.

Features

- Package with DCB ceramic base plate
- Isolation voltage 3000 V~
- Planar passivated chips
- Low forward voltage drop
- · Leads suitable for PC board soldering

Applications

- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- · Field supply for DC motors

Advantages

- · Easy to mount with two screws
- Space and weight savings
- Improved temperature and power cycling capability
- · Small and light weight

Data according to IEC 60747 refer to a single diode/thyristor unless otherwise stated

Weight

^{*} for resistive load at bridge output. IXYS reserves the right to change limits, test conditions and dimensions.

Symbol	Test Conditions		Characte	ristic	Values
I _R , I _D	$V_{R} = V_{RRM}; V_{D} = V_{DRM}$	$T_{VJ} = T_{VJM}$ $T_{VJ} = 25^{\circ}C$	≤ ≤	5 0.3	mA mA
V_{T}, V_{F}	I_{T} , $I_{F} = 45 \text{ A}$; $T_{VJ} = 25^{\circ}$		<u>≤</u>	1.45	V
V _{το} r _τ	For power-loss calcula	tions only $(T_{VJ} = 125^{\circ}C)$)	0.85 13	V mΩ
\mathbf{V}_{GT}	$V_D = 6 V;$ $V_D = 6 V;$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = -40^{\circ}C$ $T_{VJ} = 25^{\circ}C$	< < <	1.0 1.2 65	V V mA
		$T_{VJ}^{VJ} = -40^{\circ}C$ $T_{VJ} = 125^{\circ}C$	≤ ≤	80 50	mA mA
V _{GD} I _{GD}	$\begin{aligned} T_{VJ} &= T_{VJM}; \\ T_{VJ} &= T_{VJM}; \end{aligned}$	$V_{D} = 2/3 V_{DRM}$ $V_{D} = 2/3 V_{DRM}$	≤ ≤	0.2 5	V mA
I _L	$I_{_{\rm G}} = 0.3 \; \text{A;} \; t_{_{\rm G}} = 30 \; \mu \text{s;} \; di_{_{\rm G}}/dt = 0.3 \; \text{A/}\mu \text{s;}$	T _{VJ} = 25°C T _{VJ} = -40°C T _{VJ} = 125°C	\le \	150 200 100	mA mA mA
I _H	$T_{VJ} = 25^{\circ}C; V_{D} = 6 V; F$	R _{GK} = ∞	S	100	mA
t _{gd}	$T_{VJ} = 25^{\circ}\text{C}; V_{D} = 1/2 V_{DRM}$ $I_{G} = 0.3 \text{ A}; di_{G}/dt = 0.3 \text{ A}/\mu\text{s}$		≤	2	μs
t _q	$T_{VJ} = 125^{\circ}\text{C}, I_{T} = 15 \text{ A}, t_{P} = 300 \mu\text{s}, V_{R} = 100 \text{ V} \\ \text{di/dt} = -10 \text{ A/}\mu\text{s}, \text{dv/dt} = 20 \text{ V/}\mu\text{s}, V_{D} = 2/3 \text{ V}_{DRM}$		typ.	150	μs
R _{thJC}	per thyristor (diode); D			1.4	K/W K/W
R _{thJK}	per thyristor (diode); DC current per module			2.0 0.5	K/W K/W
d _s d _A a	Creepage distance on Creepage distance in Max. allowable accele	air		12.6 6.3 50	mm mm m/s²

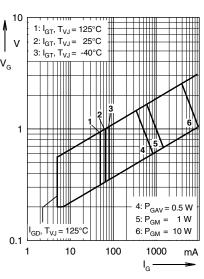


Fig. 1 Gate trigger range

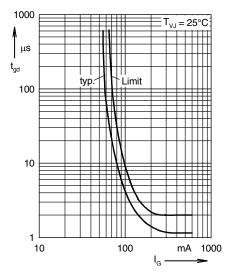
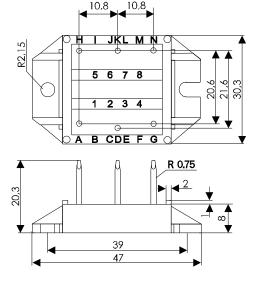



Fig. 2 Gate controlled delay time $t_{\rm gd}$

Dimensions in mm (1 mm = 0.0394")

IXYS reserves the right to change limits, test conditions and dimensions.