

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

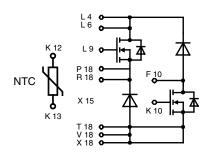
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



CoolMOS Power MOSFET

in ECO-PAC 2

N-Channel Enhancement Mode Low R_{DSon}, High V_{DSS} MOSFET Package with Electrically Isolated Base

Preliminary data

MOSFET					
Symbol	Conditions	Maximum Ratings			
V _{DSS}	T _{VJ} = 25°C to 150°C	600	V		
V _{GS}		± 20	V		
I _{D25}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$	38 25	A A		
d _v /dt	$V_{DS} < V_{DSS}; I_F \le 50 \text{ A}; di_F/dt \le 200 \text{ A}/\mu\text{s}$ $T_{VJ} = 150^{\circ}\text{C}$	6	V/ns		
E _{AS}	I _D = 10 A; T _C = 25°C	1.8	J		
E _{AR}	$I_D = 20 \text{ A}; T_C = 25^{\circ}\text{C}$	1	mJ		

Symbol Conditions

Characteristic Values

(T_{VJ} = 25°C, unless otherwise specified)

		min.	typ.	max.	
R _{DSon}	$V_{GS} = 10 \text{ V}; I_D = I_{D90}$			70	mΩ
V _{GS(th)}	$V_{DS} = 20 \text{ V}; I_{D} = 3 \text{ mA}$	3.5		5.5	V
I _{DSS}	$V_{DS} = V_{DSS}$; $V_{GS} = 0 \text{ V}$; $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		60	25	μ Α μ Α
I _{GSS}	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$			100	nA
$egin{array}{c} oldsymbol{Q}_{g} \ oldsymbol{Q}_{gs} \ oldsymbol{Q}_{gd} \ \end{array}$			220 55 125		nC nC nC
t _{d(on)} t _r t _{d(off)} t _f	$\begin{cases} V_{GS} = 10 \text{ V; } V_{DS} = 380 \text{ V} \\ I_{D} = 25 \text{ A; } R_{G} = 1.8 \Omega \end{cases}$		30 95 100 10		ns ns ns ns
R _{thJC}	per MOSFET			0.45	K/W

Data according of IEC 60747 refer to a single diode or transistor unless otherwise stated

 $I_{D25} = 38 A$ $V_{DSS} = 600 V$ $R_{DSon} = 70 m\Omega$

Pin arrangement see outlines

Applications

- ECO-PAC 2 with DCB Base
 - Electrical isolation towards the heatsink
- Low coupling capacitance to the heatsink for reduced EMI
- High power dissipation
- High temperature cycling capability of chip on DCB
- solderable pins for DCB mounting
- fast CoolMOS power MOSFET
 - High blocking capability
 - Low on resistance
 - Avalanche rated for unclamped inductive switching (UIS)
- Low thermal resistance due to reduced chip thickness
- · Enhanced total power density

Applications

- Switched mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)
- Power factor correction (PFC)
- Welding
- Inductive heating

1) CoolMOS is a trademark of Infineon Technologies AG.

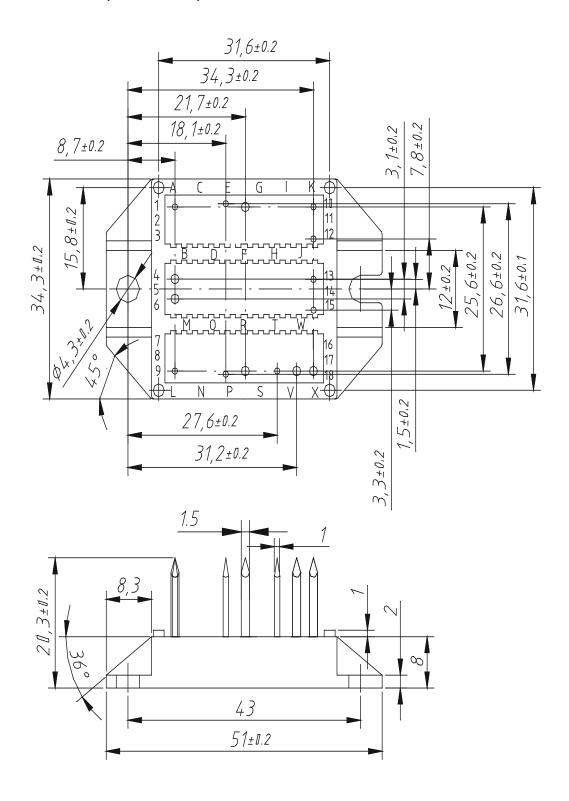
20091214a

Source-Drain Diode						
Symbol	Conditions	Characteristic Values				
	(T _{VJ} = 25°C,	, unless otherwise specified)			cified)	
		min.	typ.	max.		
I _s	Inverse diode forward current			47	А	
I _{SM}	Inverse diode direct current pulsed			141	Α	
V _{SD}	Inverse diode forward voltage $V_{GS} = 0 \text{ V}; I_F = I_S$		1	1.2	V	
t _{rr}			580		ns	
Q _{rr}	$V_{R} = 350 \text{ V}$		23		μC	
I _{RM}	$ \begin{array}{l} $		73		Α	
di _{rr} /dt			900		A/µs	

Reverse diodes (FRED)						
Symbol	Conditions	Maximum Ra	Maximum Ratings			
I _{F25}	T = 25°C	18.5	A			
I _{F80}	T = 80°C	12.0	Α			

Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
V _F	$I_F = 15 \text{ A};$ $T = 25^{\circ}\text{C}$ $T = 125^{\circ}\text{C}$	11.2 11.2			mm mm
I _{RM} t _{rr}	$I_F = 10 \text{ A}; di_F/dt = 400 \text{ A/}\mu\text{s}; T = 125^{\circ}\text{C}$ $V_R = 300 \text{ V}; V_{GE} = 0 \text{ V}$		7 70		A ns
R _{thJC}	with heatsink compound (0.42 K/m.K; 50 μm)		7	0.35	K/W K/W

Temperature Sensor NTC						
Symbol	Conditions	C	haracte	eristic Va	alues	
		min.	typ.	max.		
R ₂₅ B _{25/50}	T = 25°C	4.75	5.0 3375	5.25	kΩ K	


Module						
Symbol	Conditions	Maximum Ra	Maximum Ratings			
T _{VJ} T _{stg}		-40+150 -40+125	°C O°			
V _{ISOL}	I _{ISOL} ≤ 1 mA; 50/60 Hz; t = 1 s	3600	٧~			
M _d	mounting torque (M4)	1.5 - 2.0 14 - 18	Nm lb.in			
а	Max. allowable acceleration	50	m/s²			

Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
d _s	Creepage distance on surface (pin to heatsink) Strike distance in air (pin to heatsink)	11.2 11.2			mm mm
Weight			24		g

© IXYS 2009 All rights reserved 2 - 3

Dimensions in mm (1 mm = 0.0394")

