

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

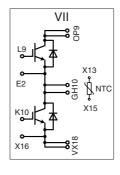
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



IGBT Modules in ECO-PAC 2

Short Circuit SOA Capability Square RBSOA

Preliminary data sheet

 I_{C25} = 121 A V_{CES} = 600 V $V_{CE(sat) typ.}$ = 2.3 V

Pin arangement see outlines

IGBTs				
Symbol	Conditions	Maximum Ra	atings	
V _{CES}	$T_{VJ} = 25$ °C to 150°C	600	V	
V _{GES}		± 20	V	
I _{C25}	$T_C = 25^{\circ}C$ $T_C = 80^{\circ}C$	121 83	A A	
V _{CEK}	V_{GE} = ±15 V; R_{G} = 2.2 Ω ; T_{VJ} = 125°C RBSOA, Clamped inductive load; L = 100 μ H	200 360	A V	
t _{sc} (SCSOA)	$V_{CE} = V_{CES}$; $V_{GE} = \pm 15$ V; $R_{G} = 2.2~\Omega$; $T_{VJ} = 125^{\circ}C$ non-repetitive	10	μs	
P _{tot}	T _C = 25°C	379	W	

Symbol	Conditions		Characteristic Values		
	$(T_{VJ} = 25^{\circ}C)$	C, unless o min.	otherwis typ.	e spec max.	ified)
V _{CE(sat)}	$I_{C} = 130 \text{ A}; V_{GE} = 15 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		2.3 2.6	2.9	V
V _{GE(th)}	$I_{\rm C}$ = 1.5 mA; $V_{\rm GE}$ = $V_{\rm CE}$	4.5		6.5	V
CES	$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$; $T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$			1.2 7.5	mA mA
I _{GES}	$V_{CE} = 0 \text{ V}; V_{GE} = \pm 20 \text{ V}$			400	nA
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	$\begin{cases} \text{Inductive load, T}_{\text{VJ}} = 125^{\circ}\text{C} \\ \text{V}_{\text{CE}} = 300 \text{ V; I}_{\text{C}} = 80 \text{ A} \\ \text{V}_{\text{GE}} = 15/0 \text{ V; R}_{\text{G}} = 2.2 \Omega \end{cases}$		25 11 150 30 0.8 2.3		ns ns ns ns mJ mJ
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; f = 1 \text{ MHz}$		4.2		nF
R _{thJC} R _{thJH}	(per IGBT) with heatsink compound (0.42 K/m.K; 50 μm))	0.66	0.33	K/W K/W
IXYS reserv	es the right to change limits, test conditions and	dimensions			

Features

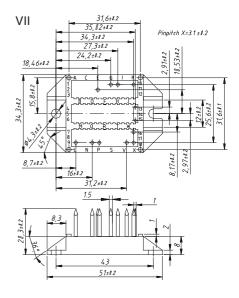
- NPT IGBT's
 - positive temperature coefficient of saturation voltage
 - fast switching
- FRED diodes
 - fast reverse recovery
- low forward voltage
- Industry Standard Package
 - solderable pins for PCB mounting
 - isolated DCB ceramic base plate

Advantages

- space and weight savings
- reduced protection circuits
- leads with expansion bend for stress relief

Typical Applications

- AC and DC motor control
- AC servo and robot drives
- power supplies
- welding inverters


Reverse diodes (FRED)					
Symbol	Conditions	Maximum Rating	Maximum Ratings		
I _{F25}	$T_{c} = 25^{\circ}C$	134.0	A		
I _{F80}	$T_{C} = 80^{\circ}C$	82.3	Α		

Symbol	ymbol Conditions Cha			aracteristic Values		
		min.	typ.	max.		
V _F	$I_F = 80 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$ $T_{VJ} = 125^{\circ}\text{C}$		1.85 1.40	2.06	V	
I _{RM}	$\begin{cases} I_{_{F}} = 60 \text{ A; } di_{_{F}}/dt = 500 \text{ A/}\mu\text{s; } T_{_{VJ}} = 125^{\circ}\text{C} \\ V_{_{R}} = 300 \text{ V; } V_{_{GE}} = 0 \text{ V} \end{cases}$		28 100		A ns	
R _{thJC} R _{thJH}	with heatsink compound (0.42 K/m.K; 50 μm)	·	1.32	0.66	K/W K/W	

Temperature Sensor NTC					
Symbol	Conditions	Characteristic Values			
		min.	typ.	max.	
R ₂₅ B _{25/50}	T = 25°C	4.75	5.0 3375	5.25	kΩ K

Module			
Symbol	Conditions	Maximum Ratings	
T _{VJ}		-40+150 -40+150	°C
V _{ISOL}	I _{ISOL} ≤ 1 mA; 50/60 Hz	3000	V~
M _d	mounting torque (M4)	1.5 - 2.0 14 - 18	Nm lb.in.
а	Max. allowable acceleration	50	m/s²

Symbol	Conditions		Characteristic Values		
		min.	typ.	max.	
d _s d _A	Creepage distance on surface (Pin to heatsink) Strike distance in air (Pin to heatsink)	11.2 11.2		mm mm	
Weight			24	g	

